Jiajin Zhao, Yan Chen, Ziqi An, Mengyan Zhang, Wenfeng Wang, Qiubo Guo, Yuan Li, Shumin Han and Lu Zhang
{"title":"Toward the next generation of sustainable aluminum-ion batteries: a review","authors":"Jiajin Zhao, Yan Chen, Ziqi An, Mengyan Zhang, Wenfeng Wang, Qiubo Guo, Yuan Li, Shumin Han and Lu Zhang","doi":"10.1039/D4GC04505J","DOIUrl":null,"url":null,"abstract":"<p >Rechargeable aluminum-ion batteries (AIBs) are regarded as viable alternatives to lithium-ion battery technology because of their high volumetric capacity, low cost, and the rich abundance of aluminum. With the exploitation of high-performance electrode materials, electrolyte systems, and in-depth charge carrier storage mechanism investigation, the electrochemical performances of AIBs have been greatly enhanced; however, researches show that the cathode suffers from insufficient capacity, sluggish reaction kinetics, and poor cycling stability, and the anode also has challenges such as dendrites, passivation, and hydrogen evolution reaction side reactions. Herein, we review the strategies and progress of cathode materials for realizing the advantages in the literature according to the charge storage mechanism for AIBs. Current problems and possible solutions are discussed, and prospects are also proposed. In addition, we analyze recent anode electrode modification strategies and electrolyte modification strategies. Finally, we highlight the current problems and provide an outlook. This review could guide future research and development efforts toward more effective and efficient AIBs.</p>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":" 2","pages":" 352-378"},"PeriodicalIF":9.3000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/gc/d4gc04505j","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Rechargeable aluminum-ion batteries (AIBs) are regarded as viable alternatives to lithium-ion battery technology because of their high volumetric capacity, low cost, and the rich abundance of aluminum. With the exploitation of high-performance electrode materials, electrolyte systems, and in-depth charge carrier storage mechanism investigation, the electrochemical performances of AIBs have been greatly enhanced; however, researches show that the cathode suffers from insufficient capacity, sluggish reaction kinetics, and poor cycling stability, and the anode also has challenges such as dendrites, passivation, and hydrogen evolution reaction side reactions. Herein, we review the strategies and progress of cathode materials for realizing the advantages in the literature according to the charge storage mechanism for AIBs. Current problems and possible solutions are discussed, and prospects are also proposed. In addition, we analyze recent anode electrode modification strategies and electrolyte modification strategies. Finally, we highlight the current problems and provide an outlook. This review could guide future research and development efforts toward more effective and efficient AIBs.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.