Jake H. Nicholson, Mayara Chagas de Avila, Ricardo Rodrigues de Melo, Leticia Maria Zanphorlin and Alex P. S. Brogan
{"title":"Enhancing the reactivity of a P450 decarboxylase with ionic liquids†","authors":"Jake H. Nicholson, Mayara Chagas de Avila, Ricardo Rodrigues de Melo, Leticia Maria Zanphorlin and Alex P. S. Brogan","doi":"10.1039/D4GC05292G","DOIUrl":null,"url":null,"abstract":"<p >The cytochrome P450 family of enzymes have been shown to be powerful biocatalysts for a wide range of selective transformations. However, the industrial uptake of P450 enzymes has been low due to issues with enzyme stability and the requirement for exogenous cofactors to drive the reaction. Herein we describe a facile and scalable method for the stabilisation and solubilisation of a P450 decarboxylase enzyme in ionic liquids. The utilisation of ionic liquids allowed for solubilisation of the relatively water-insoluble fatty acid substrate of the enzyme and the modified enzyme was found to be significantly more thermally stable in ionic liquids relative to the enzyme in aqueous media. The shift to non-aqueous solvent allowed for the enzyme to operate in the <em>V</em><small><sub>max</sub></small> region, which when coupled with the improved thermal stability, ultimately resulted in a 1000-fold increase in the process intensity of fatty acid decarboxylation. A novel photochemical method for driving the reaction was also discovered which removed the requirement for exogenous H<small><sub>2</sub></small>O<small><sub>2</sub></small> to be added to the reaction. These results highlight the potential of this strategy as it facilitates a holistic process of biocatalysis engineering where by solvent consideration and increased thermal stability significantly broadens the capability of the enzyme, crucial for the wider realization of industrial biocatalysis.</p>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":" 2","pages":" 517-526"},"PeriodicalIF":9.3000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/gc/d4gc05292g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/gc/d4gc05292g","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The cytochrome P450 family of enzymes have been shown to be powerful biocatalysts for a wide range of selective transformations. However, the industrial uptake of P450 enzymes has been low due to issues with enzyme stability and the requirement for exogenous cofactors to drive the reaction. Herein we describe a facile and scalable method for the stabilisation and solubilisation of a P450 decarboxylase enzyme in ionic liquids. The utilisation of ionic liquids allowed for solubilisation of the relatively water-insoluble fatty acid substrate of the enzyme and the modified enzyme was found to be significantly more thermally stable in ionic liquids relative to the enzyme in aqueous media. The shift to non-aqueous solvent allowed for the enzyme to operate in the Vmax region, which when coupled with the improved thermal stability, ultimately resulted in a 1000-fold increase in the process intensity of fatty acid decarboxylation. A novel photochemical method for driving the reaction was also discovered which removed the requirement for exogenous H2O2 to be added to the reaction. These results highlight the potential of this strategy as it facilitates a holistic process of biocatalysis engineering where by solvent consideration and increased thermal stability significantly broadens the capability of the enzyme, crucial for the wider realization of industrial biocatalysis.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.