Synergistic role of nickel-chromium heterogeneous selenides in the efficient stabilisation of the oxygen evolution reaction

IF 5.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Tao Wang, Ruixue Sun, Ting Li, Hui Si, Haoyu Luo, Gang Lv, Jiancong Fu, Bing Wang, Zhiqin Peng
{"title":"Synergistic role of nickel-chromium heterogeneous selenides in the efficient stabilisation of the oxygen evolution reaction","authors":"Tao Wang, Ruixue Sun, Ting Li, Hui Si, Haoyu Luo, Gang Lv, Jiancong Fu, Bing Wang, Zhiqin Peng","doi":"10.1016/j.jallcom.2024.178250","DOIUrl":null,"url":null,"abstract":"The oxygen evolution reaction (OER), a kinetically sluggish process, remains critical for water electrolysis in clean energy production. Transition metal selenides (TMSs) have emerged as promising catalysts, owing to their high conductivity, tunable electronic properties, and cost-effectiveness. In this study, nickel-chromium layered selenide nanosheets were synthesized in-situ on a nickel-chromium foam (NCF) substrate using a hydrothermal method. The resulting NiSe<sub>2</sub>-Cr<sub>2</sub>Se<sub>3</sub>/NCF exhibits a large specific surface area, abundant heterogeneous interfaces, and optimized electronic structures, which demonstrate efficient electrocatalytic activity in the OER within a 1<!-- --> <!-- -->M KOH electrolyte (173<!-- --> <!-- -->mV at 10<!-- --> <!-- -->mA<!-- --> <!-- -->cm<sup>-2</sup>, 246<!-- --> <!-- -->mV at 100<!-- --> <!-- -->mA<!-- --> <!-- -->cm<sup>-2</sup>). Density functional theory (DFT) calculations reveal that the heterogeneous chromium-nickel structure modifies the electronic density of active sites, enhancing charge transfer and lowering the energy barrier for the OER. Additionally, the biphasic structure prevents phase degradation and surface passivation during long-term operation, thereby enhancing stability. This work not only demonstrates the potential utility of NiSe<sub>2</sub>-Cr<sub>2</sub>Se<sub>3</sub> heterostructured selenides in large-scale electrochemical water splitting but also provides novel insights into the design of high-performance transition-metal selenide catalysts featuring multiphase heterostructures.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"82 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2024.178250","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The oxygen evolution reaction (OER), a kinetically sluggish process, remains critical for water electrolysis in clean energy production. Transition metal selenides (TMSs) have emerged as promising catalysts, owing to their high conductivity, tunable electronic properties, and cost-effectiveness. In this study, nickel-chromium layered selenide nanosheets were synthesized in-situ on a nickel-chromium foam (NCF) substrate using a hydrothermal method. The resulting NiSe2-Cr2Se3/NCF exhibits a large specific surface area, abundant heterogeneous interfaces, and optimized electronic structures, which demonstrate efficient electrocatalytic activity in the OER within a 1 M KOH electrolyte (173 mV at 10 mA cm-2, 246 mV at 100 mA cm-2). Density functional theory (DFT) calculations reveal that the heterogeneous chromium-nickel structure modifies the electronic density of active sites, enhancing charge transfer and lowering the energy barrier for the OER. Additionally, the biphasic structure prevents phase degradation and surface passivation during long-term operation, thereby enhancing stability. This work not only demonstrates the potential utility of NiSe2-Cr2Se3 heterostructured selenides in large-scale electrochemical water splitting but also provides novel insights into the design of high-performance transition-metal selenide catalysts featuring multiphase heterostructures.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信