Subthalamic γ Oscillation Underlying Rapid Eye Movement Sleep Abnormality in Parkinsonian Patients
IF 7.4
1区 医学
Q1 CLINICAL NEUROLOGY
Lingxiao Guan, Huiling Yu, Yue Chen, Chen Gong, Hongwei Hao, Yi Guo, Shujun Xu, Yuhuan Zhang, Xuemei Yuan, Guoping Yin, Jianguo Zhang, Huiling Tan, Luming Li
求助PDF
{"title":"Subthalamic γ Oscillation Underlying Rapid Eye Movement Sleep Abnormality in Parkinsonian Patients","authors":"Lingxiao Guan, Huiling Yu, Yue Chen, Chen Gong, Hongwei Hao, Yi Guo, Shujun Xu, Yuhuan Zhang, Xuemei Yuan, Guoping Yin, Jianguo Zhang, Huiling Tan, Luming Li","doi":"10.1002/mds.30091","DOIUrl":null,"url":null,"abstract":"BackgroundAbnormal rapid eye movement (REM) sleep, including REM sleep behavior disorder (RBD) and reduced REM sleep, is common in Parkinson's disease (PD), highlighting the importance of further study on REM sleep. However, the biomarkers of REM disturbances remain unknown, leading to the lack of REM‐specific neuromodulation interventions.ObjectiveThis study aims to investigate the neurophysiological biomarkers of REM disturbance in parkinsonian patients.MethodsTen PD patients implanted with bilateral subthalamic nucleus‐deep brain stimulation (STN‐DBS) were included in this study, of whom 4 were diagnosed with RBD. Sleep monitoring was conducted 1 month after surgery. Subthalamic local field potentials (LFP) were recorded through sensing‐enabled DBS. The neurophysiological features of subthalamic LFP during phasic and tonic microstates of REM sleep and their correlation with REM sleep fragmentation and RBD were analyzed.ResultsDifferences in subthalamic γ oscillation between phasic and tonic REM correlated positively with the severity of REM sleep fragmentation. Patients with RBD also exhibited stronger γ oscillations during REM sleep compared with non‐RBD patients, and both increased β and γ were found before the onset of RBD episodes. Stimulation changes in simulated γ‐triggered feedback modulation followed more closely with phasic REM density, whereas an opposite trend was found in simulated β‐triggered feedback modulation.ConclusionExcess subthalamic γ oscillations may contribute to REM instability and RBD, suggesting that γ oscillation could serve as a feedback signal for adaptive DBS for REM sleep disorders. © 2024 The Author(s). <jats:italic>Movement Disorders</jats:italic> published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.","PeriodicalId":213,"journal":{"name":"Movement Disorders","volume":"24 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Movement Disorders","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mds.30091","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Abstract
BackgroundAbnormal rapid eye movement (REM) sleep, including REM sleep behavior disorder (RBD) and reduced REM sleep, is common in Parkinson's disease (PD), highlighting the importance of further study on REM sleep. However, the biomarkers of REM disturbances remain unknown, leading to the lack of REM‐specific neuromodulation interventions.ObjectiveThis study aims to investigate the neurophysiological biomarkers of REM disturbance in parkinsonian patients.MethodsTen PD patients implanted with bilateral subthalamic nucleus‐deep brain stimulation (STN‐DBS) were included in this study, of whom 4 were diagnosed with RBD. Sleep monitoring was conducted 1 month after surgery. Subthalamic local field potentials (LFP) were recorded through sensing‐enabled DBS. The neurophysiological features of subthalamic LFP during phasic and tonic microstates of REM sleep and their correlation with REM sleep fragmentation and RBD were analyzed.ResultsDifferences in subthalamic γ oscillation between phasic and tonic REM correlated positively with the severity of REM sleep fragmentation. Patients with RBD also exhibited stronger γ oscillations during REM sleep compared with non‐RBD patients, and both increased β and γ were found before the onset of RBD episodes. Stimulation changes in simulated γ‐triggered feedback modulation followed more closely with phasic REM density, whereas an opposite trend was found in simulated β‐triggered feedback modulation.ConclusionExcess subthalamic γ oscillations may contribute to REM instability and RBD, suggesting that γ oscillation could serve as a feedback signal for adaptive DBS for REM sleep disorders. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
来源期刊
期刊介绍:
Movement Disorders publishes a variety of content types including Reviews, Viewpoints, Full Length Articles, Historical Reports, Brief Reports, and Letters. The journal considers original manuscripts on topics related to the diagnosis, therapeutics, pharmacology, biochemistry, physiology, etiology, genetics, and epidemiology of movement disorders. Appropriate topics include Parkinsonism, Chorea, Tremors, Dystonia, Myoclonus, Tics, Tardive Dyskinesia, Spasticity, and Ataxia.