HF-free low temperature synthesis of MXene for electrochemical hydrogen production.

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ranjit D Mohili, Kajal Mahabari, Monika Patel, N R Hemanth, Arvind Jadhav, Kwangyeol Lee, Nitin Chaudhari
{"title":"HF-free low temperature synthesis of MXene for electrochemical hydrogen production.","authors":"Ranjit D Mohili, Kajal Mahabari, Monika Patel, N R Hemanth, Arvind Jadhav, Kwangyeol Lee, Nitin Chaudhari","doi":"10.1088/1361-6528/ada1de","DOIUrl":null,"url":null,"abstract":"<p><p>MXenes (two-dimensional (2D) transition-metal carbides, nitrides, and carbonitrides) are gaining significant interest as alternative electrocatalysts for the hydrogen evolution reaction due to their excellent properties, such as high electrical conductivity, large surface area, and chemical stability. MXenes are traditionally synthesized using hydrofluoric acid (HF), which raises safety and environmental concerns due to its highly corrosive and toxic nature. HF introduces fluoride functional groups on the surface of MXenes, which have been reported to have a detrimental effect on electrocatalysis. As a result, there is growing interest in developing MXenes through non-fluoride routes. Here, we report a room-temperature, HF-free, wet-chemical synthesis of MXene using a hydrogen peroxide and chromium chloride mixture. The newly prepared CH-MXenes possess hydrophilic functionalities (-Cl, -OH, and =O). Key advantages of the CH-route over HF-based synthesis include the elimination of an additional delamination step, the prevention of MXene restacking via chloride functionalities, and the consistent production of high-quality 2D MXenes with a reproducible flake size (~650 nm). These CH-MXenes exhibit high surface area, excellent conductivity, and enhanced chemical stability, making them suitable for various energy and other applications.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ada1de","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

MXenes (two-dimensional (2D) transition-metal carbides, nitrides, and carbonitrides) are gaining significant interest as alternative electrocatalysts for the hydrogen evolution reaction due to their excellent properties, such as high electrical conductivity, large surface area, and chemical stability. MXenes are traditionally synthesized using hydrofluoric acid (HF), which raises safety and environmental concerns due to its highly corrosive and toxic nature. HF introduces fluoride functional groups on the surface of MXenes, which have been reported to have a detrimental effect on electrocatalysis. As a result, there is growing interest in developing MXenes through non-fluoride routes. Here, we report a room-temperature, HF-free, wet-chemical synthesis of MXene using a hydrogen peroxide and chromium chloride mixture. The newly prepared CH-MXenes possess hydrophilic functionalities (-Cl, -OH, and =O). Key advantages of the CH-route over HF-based synthesis include the elimination of an additional delamination step, the prevention of MXene restacking via chloride functionalities, and the consistent production of high-quality 2D MXenes with a reproducible flake size (~650 nm). These CH-MXenes exhibit high surface area, excellent conductivity, and enhanced chemical stability, making them suitable for various energy and other applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信