Improving prediction of solar radiation using Cheetah Optimizer and Random Forest.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2024-12-20 eCollection Date: 2024-01-01 DOI:10.1371/journal.pone.0314391
Ibrahim Al-Shourbaji, Pramod H Kachare, Abdoh Jabbari, Raimund Kirner, Digambar Puri, Mostafa Mehanawi, Abdalla Alameen
{"title":"Improving prediction of solar radiation using Cheetah Optimizer and Random Forest.","authors":"Ibrahim Al-Shourbaji, Pramod H Kachare, Abdoh Jabbari, Raimund Kirner, Digambar Puri, Mostafa Mehanawi, Abdalla Alameen","doi":"10.1371/journal.pone.0314391","DOIUrl":null,"url":null,"abstract":"<p><p>In the contemporary context of a burgeoning energy crisis, the accurate and dependable prediction of Solar Radiation (SR) has emerged as an indispensable component within thermal systems to facilitate renewable energy generation. Machine Learning (ML) models have gained widespread recognition for their precision and computational efficiency in addressing SR prediction challenges. Consequently, this paper introduces an innovative SR prediction model, denoted as the Cheetah Optimizer-Random Forest (CO-RF) model. The CO component plays a pivotal role in selecting the most informative features for hourly SR forecasting, subsequently serving as inputs to the RF model. The efficacy of the developed CO-RF model is rigorously assessed using two publicly available SR datasets. Evaluation metrics encompassing Mean Absolute Error (MAE), Mean Squared Error (MSE), and coefficient of determination (R2) are employed to validate its performance. Quantitative analysis demonstrates that the CO-RF model surpasses other techniques, Logistic Regression (LR), Support Vector Machine (SVM), Artificial Neural Network, and standalone Random Forest (RF), both in the training and testing phases of SR prediction. The proposed CO-RF model outperforms others, achieving a low MAE of 0.0365, MSE of 0.0074, and an R2 of 0.9251 on the first dataset, and an MAE of 0.0469, MSE of 0.0032, and R2 of 0.9868 on the second dataset, demonstrating significant error reduction.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"19 12","pages":"e0314391"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0314391","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In the contemporary context of a burgeoning energy crisis, the accurate and dependable prediction of Solar Radiation (SR) has emerged as an indispensable component within thermal systems to facilitate renewable energy generation. Machine Learning (ML) models have gained widespread recognition for their precision and computational efficiency in addressing SR prediction challenges. Consequently, this paper introduces an innovative SR prediction model, denoted as the Cheetah Optimizer-Random Forest (CO-RF) model. The CO component plays a pivotal role in selecting the most informative features for hourly SR forecasting, subsequently serving as inputs to the RF model. The efficacy of the developed CO-RF model is rigorously assessed using two publicly available SR datasets. Evaluation metrics encompassing Mean Absolute Error (MAE), Mean Squared Error (MSE), and coefficient of determination (R2) are employed to validate its performance. Quantitative analysis demonstrates that the CO-RF model surpasses other techniques, Logistic Regression (LR), Support Vector Machine (SVM), Artificial Neural Network, and standalone Random Forest (RF), both in the training and testing phases of SR prediction. The proposed CO-RF model outperforms others, achieving a low MAE of 0.0365, MSE of 0.0074, and an R2 of 0.9251 on the first dataset, and an MAE of 0.0469, MSE of 0.0032, and R2 of 0.9868 on the second dataset, demonstrating significant error reduction.

利用猎豹优化器和随机森林改进太阳辐射预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信