Binocular contributions to motion detection and motion discrimination during locomotion.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2024-12-20 eCollection Date: 2024-01-01 DOI:10.1371/journal.pone.0315392
Hongyi Guo, Robert S Allison
{"title":"Binocular contributions to motion detection and motion discrimination during locomotion.","authors":"Hongyi Guo, Robert S Allison","doi":"10.1371/journal.pone.0315392","DOIUrl":null,"url":null,"abstract":"<p><p>During locomotion, the visual system can factor out the motion component caused by observer locomotion from the complex target flow vector to obtain the world-relative target motion. This process, which has been termed flow parsing, is known to be incomplete, but viewing with both eyes could potentially aid in this task. Binocular disparity and binocular summation could both improve performance when viewing with both eyes. To separate the binocular disparity and binocular summation and analyse how they affect flow parsing, we tested detection and discrimination thresholds under three viewing conditions: stereoscopic, synoptic (binocular but without disparity) and monocular. Experiment 1 tested motion detection during simulated forward self-motion and when stationary. Experiment 2 and 3 tested motion discrimination in forward and backward self-motion and stationary conditions. We found that binocular disparity significantly improved detection thresholds and discrimination biases, at the cost of lower precision. Binocular summation only significantly improved detection thresholds when stationary. It did not significantly affect detection thresholds during locomotion, discrimination biases, or discrimination precisions. Our results indicated that both binocular summation and binocular disparity contribute to motion detection and motion discrimination, but they affect performance differently while stationary and during locomotion.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"19 12","pages":"e0315392"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0315392","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

During locomotion, the visual system can factor out the motion component caused by observer locomotion from the complex target flow vector to obtain the world-relative target motion. This process, which has been termed flow parsing, is known to be incomplete, but viewing with both eyes could potentially aid in this task. Binocular disparity and binocular summation could both improve performance when viewing with both eyes. To separate the binocular disparity and binocular summation and analyse how they affect flow parsing, we tested detection and discrimination thresholds under three viewing conditions: stereoscopic, synoptic (binocular but without disparity) and monocular. Experiment 1 tested motion detection during simulated forward self-motion and when stationary. Experiment 2 and 3 tested motion discrimination in forward and backward self-motion and stationary conditions. We found that binocular disparity significantly improved detection thresholds and discrimination biases, at the cost of lower precision. Binocular summation only significantly improved detection thresholds when stationary. It did not significantly affect detection thresholds during locomotion, discrimination biases, or discrimination precisions. Our results indicated that both binocular summation and binocular disparity contribute to motion detection and motion discrimination, but they affect performance differently while stationary and during locomotion.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信