Tracking adipose-derived stem cell exosomes applied in a mouse crush injury model: insights from fluorescent labeling and spatial transcriptomics - an experimental study.
{"title":"Tracking adipose-derived stem cell exosomes applied in a mouse crush injury model: insights from fluorescent labeling and spatial transcriptomics - an experimental study.","authors":"Cheng-Shyuan Rau, Shao-Chun Wu, Pao-Jen Kuo, Chia-Wei Lin, Tsu-Hsiang Lu, Yi-Chan Wu, Chia-Wen Tsai, Ching-Hua Hsieh","doi":"10.1097/JS9.0000000000002166","DOIUrl":null,"url":null,"abstract":"<p><p>Adipose-derived stem cell exosomes (ADSC-exos) are promising for nerve regeneration; however, their precise mechanisms remain unclear. This study employed fluorescent labeling and spatial transcriptomics to track the effects of ADSC-exos on crushed sciatic nerves in mice. Labeled exosomes were detected in spinal neurons and proximal nerve segments after application. Spatial transcriptomics revealed significant changes in gene expression, with an upregulation of neurons and Schwann cells and the downregulation of oligodendrocytes. The key pathways affected were prosaposin, pleiotrophin, fibroblast growth factor, secreted phosphoprotein 1, SLIT and NTRK-like family, member, vascular endothelial growth factor, and growth arrest-specific protein. ADSC-exo treatment enhanced cell-cell interactions, particularly between Schwann cells and astrocytes, thereby promoting a regenerative environment. Gene ontology analysis suggested improvements in metabolic activity, cell communication, and structural support. This study highlights the complex interplay between multiple cell types and signaling pathways involved in the nerve regeneration response to ADSC-exos. This comprehensive approach offers new perspectives on the role of ADSC-exos in nerve regeneration and paves the way for advanced regenerative strategies for peripheral nerve injuries.</p>","PeriodicalId":14401,"journal":{"name":"International journal of surgery","volume":" ","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/JS9.0000000000002166","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0
Abstract
Adipose-derived stem cell exosomes (ADSC-exos) are promising for nerve regeneration; however, their precise mechanisms remain unclear. This study employed fluorescent labeling and spatial transcriptomics to track the effects of ADSC-exos on crushed sciatic nerves in mice. Labeled exosomes were detected in spinal neurons and proximal nerve segments after application. Spatial transcriptomics revealed significant changes in gene expression, with an upregulation of neurons and Schwann cells and the downregulation of oligodendrocytes. The key pathways affected were prosaposin, pleiotrophin, fibroblast growth factor, secreted phosphoprotein 1, SLIT and NTRK-like family, member, vascular endothelial growth factor, and growth arrest-specific protein. ADSC-exo treatment enhanced cell-cell interactions, particularly between Schwann cells and astrocytes, thereby promoting a regenerative environment. Gene ontology analysis suggested improvements in metabolic activity, cell communication, and structural support. This study highlights the complex interplay between multiple cell types and signaling pathways involved in the nerve regeneration response to ADSC-exos. This comprehensive approach offers new perspectives on the role of ADSC-exos in nerve regeneration and paves the way for advanced regenerative strategies for peripheral nerve injuries.
期刊介绍:
The International Journal of Surgery (IJS) has a broad scope, encompassing all surgical specialties. Its primary objective is to facilitate the exchange of crucial ideas and lines of thought between and across these specialties.By doing so, the journal aims to counter the growing trend of increasing sub-specialization, which can result in "tunnel-vision" and the isolation of significant surgical advancements within specific specialties.