Casting Skin Dressing Containing Extractions of the Organic Part of Marine Sponges for Wound Healing.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Amanda de Souza, Cintia C S Martignago, Lívia Assis, Fernanda Vieira Botelho Delpupo, Marcelo Assis, Karolyne S J Sousa, Lais Caroline Souza E Silva, Laura O Líbero, Flavia de Oliveira, Ana Claudia Muniz Renno
{"title":"Casting Skin Dressing Containing Extractions of the Organic Part of Marine Sponges for Wound Healing.","authors":"Amanda de Souza, Cintia C S Martignago, Lívia Assis, Fernanda Vieira Botelho Delpupo, Marcelo Assis, Karolyne S J Sousa, Lais Caroline Souza E Silva, Laura O Líbero, Flavia de Oliveira, Ana Claudia Muniz Renno","doi":"10.1021/acsabm.4c01497","DOIUrl":null,"url":null,"abstract":"<p><p>Skin wounds are extremely frequent injuries related to many etiologies. They are a burden on healthcare systems worldwide. Skin dressings are the most popular therapy, and collagen is the most commonly used biomaterial, although new sources of collagen have been studied, especially spongin-like from marine sponges (SPG), as a promising source due to a similar composition to vertebrates and the ability to function as a cell-matrix adhesion framework. Despite evidence showing the positive effects of SPG for tissue healing, the effects of skin dressings manufactured are still limited. In this context, this study aimed at investigating the effects of collagen skin dressings in an experimental model of skin wounds in rats. For this purpose, SEM, FTIR, cell viability, morphological and morphometric aspects, collagen deposition, and immunostaining of TGF-β and FGF were evaluated. The results demonstrated micro- and macropores on the rough surface, peak characteristics of collagen, and no cytotoxicity for the skin dressing. Also, the control group (CG) after 5 and 10 days exhibited an intense inflammatory process and the presence of granulation tissue, while the treated group (TG) exhibited re-epithelialization after 10 days. The evaluation of granulation tissue and neoepithelial length had an intragroup statistical difference (<i>p</i> = 0.0216) and no intergroup difference. Birefringence demonstrated an organized mesh arranged in a network pattern, presenting type I and type III collagen fibers in all groups. Moreover, in the morphometric evaluation, there were no statistical differences in intergroups or time points for the different types of collagen evaluated. In conclusion, these findings may indicate that the dressing has not exacerbated the inflammatory process and may allow faster healing. However, further studies using a critical wound healing injury model should be used, associated with longer experimental periods of evaluation, to further investigate the effects of these promising therapeutic approaches throughout the skin repair process.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Skin wounds are extremely frequent injuries related to many etiologies. They are a burden on healthcare systems worldwide. Skin dressings are the most popular therapy, and collagen is the most commonly used biomaterial, although new sources of collagen have been studied, especially spongin-like from marine sponges (SPG), as a promising source due to a similar composition to vertebrates and the ability to function as a cell-matrix adhesion framework. Despite evidence showing the positive effects of SPG for tissue healing, the effects of skin dressings manufactured are still limited. In this context, this study aimed at investigating the effects of collagen skin dressings in an experimental model of skin wounds in rats. For this purpose, SEM, FTIR, cell viability, morphological and morphometric aspects, collagen deposition, and immunostaining of TGF-β and FGF were evaluated. The results demonstrated micro- and macropores on the rough surface, peak characteristics of collagen, and no cytotoxicity for the skin dressing. Also, the control group (CG) after 5 and 10 days exhibited an intense inflammatory process and the presence of granulation tissue, while the treated group (TG) exhibited re-epithelialization after 10 days. The evaluation of granulation tissue and neoepithelial length had an intragroup statistical difference (p = 0.0216) and no intergroup difference. Birefringence demonstrated an organized mesh arranged in a network pattern, presenting type I and type III collagen fibers in all groups. Moreover, in the morphometric evaluation, there were no statistical differences in intergroups or time points for the different types of collagen evaluated. In conclusion, these findings may indicate that the dressing has not exacerbated the inflammatory process and may allow faster healing. However, further studies using a critical wound healing injury model should be used, associated with longer experimental periods of evaluation, to further investigate the effects of these promising therapeutic approaches throughout the skin repair process.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信