ytopt: Autotuning Scientific Applications for Energy Efficiency at Large Scales

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Xingfu Wu, Prasanna Balaprakash, Michael Kruse, Jaehoon Koo, Brice Videau, Paul Hovland, Valerie Taylor, Brad Geltz, Siddhartha Jana, Mary Hall
{"title":"ytopt: Autotuning Scientific Applications for Energy Efficiency at Large Scales","authors":"Xingfu Wu,&nbsp;Prasanna Balaprakash,&nbsp;Michael Kruse,&nbsp;Jaehoon Koo,&nbsp;Brice Videau,&nbsp;Paul Hovland,&nbsp;Valerie Taylor,&nbsp;Brad Geltz,&nbsp;Siddhartha Jana,&nbsp;Mary Hall","doi":"10.1002/cpe.8322","DOIUrl":null,"url":null,"abstract":"<p>As we enter the exascale computing era, efficiently utilizing power and optimizing the performance of scientific applications under power and energy constraints has become critical and challenging. We propose a low-overhead autotuning framework to autotune performance and energy for various hybrid MPI/OpenMP scientific applications at large scales and to explore the tradeoffs between application runtime and power/energy for energy efficient application execution, then use this framework to autotune four ECP proxy applications—XSBench, AMG, SWFFT, and SW4lite. Our approach uses Bayesian optimization with a Random Forest surrogate model to effectively search parameter spaces with up to 6 million different configurations on two large-scale HPC production systems, Theta at Argonne National Laboratory and Summit at Oak Ridge National Laboratory. The experimental results show that our autotuning framework at large scales has low overhead and achieves good scalability. Using the proposed autotuning framework to identify the best configurations, we achieve up to 91.59% performance improvement, up to 21.2% energy savings, and up to 37.84% EDP (energy delay product) improvement on up to 4096 nodes.</p>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"37 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpe.8322","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.8322","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

As we enter the exascale computing era, efficiently utilizing power and optimizing the performance of scientific applications under power and energy constraints has become critical and challenging. We propose a low-overhead autotuning framework to autotune performance and energy for various hybrid MPI/OpenMP scientific applications at large scales and to explore the tradeoffs between application runtime and power/energy for energy efficient application execution, then use this framework to autotune four ECP proxy applications—XSBench, AMG, SWFFT, and SW4lite. Our approach uses Bayesian optimization with a Random Forest surrogate model to effectively search parameter spaces with up to 6 million different configurations on two large-scale HPC production systems, Theta at Argonne National Laboratory and Summit at Oak Ridge National Laboratory. The experimental results show that our autotuning framework at large scales has low overhead and achieves good scalability. Using the proposed autotuning framework to identify the best configurations, we achieve up to 91.59% performance improvement, up to 21.2% energy savings, and up to 37.84% EDP (energy delay product) improvement on up to 4096 nodes.

Abstract Image

随着我们进入超大规模计算时代,在功耗和能耗限制条件下有效利用电能并优化科学应用的性能变得至关重要且极具挑战性。我们提出了一个低开销自动调整框架,用于在大规模条件下对各种混合 MPI/OpenMP 科学应用的性能和能耗进行自动调整,并探索应用运行时间与能耗之间的权衡,以实现高效节能的应用执行,然后使用该框架对四个 ECP 代理应用(XSBench、AMG、SWFFT 和 SW4lite)进行自动调整。我们的方法使用贝叶斯优化和随机森林代理模型,在两个大型 HPC 生产系统(阿贡国家实验室的 Theta 和橡树岭国家实验室的 Summit)上有效搜索多达 600 万种不同配置的参数空间。实验结果表明,我们的自动调整框架在大规模应用中开销低,可扩展性好。利用所提出的自动调整框架来确定最佳配置,我们在多达 4096 个节点上实现了高达 91.59% 的性能改进、21.2% 的能源节约和高达 37.84% 的 EDP(能量延迟积)改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Concurrency and Computation-Practice & Experience
Concurrency and Computation-Practice & Experience 工程技术-计算机:理论方法
CiteScore
5.00
自引率
10.00%
发文量
664
审稿时长
9.6 months
期刊介绍: Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of: Parallel and distributed computing; High-performance computing; Computational and data science; Artificial intelligence and machine learning; Big data applications, algorithms, and systems; Network science; Ontologies and semantics; Security and privacy; Cloud/edge/fog computing; Green computing; and Quantum computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信