Synergistic Passivation of Bulk and Interfacial Defects Improves Efficiency and Stability of Inverted Perovskite Solar Cells

IF 6 3区 工程技术 Q2 ENERGY & FUELS
Solar RRL Pub Date : 2024-10-28 DOI:10.1002/solr.202400658
Saikiran S. Khamgaonkar, Anny Leudjo Taka, Vivek Maheshwari
{"title":"Synergistic Passivation of Bulk and Interfacial Defects Improves Efficiency and Stability of Inverted Perovskite Solar Cells","authors":"Saikiran S. Khamgaonkar,&nbsp;Anny Leudjo Taka,&nbsp;Vivek Maheshwari","doi":"10.1002/solr.202400658","DOIUrl":null,"url":null,"abstract":"<p>\nDefects both in bulk and at the interfaces serve as charge trapping sites for nonradiative recombination and as ion migration pathways, resulting in degradation of perovskite solar cell efficiency and stability. In this work, a strategy for simultaneous passivation of both bulk and interfacial defects is reported. For bulk passivation polystyrene (PS) is used as an additive in the perovskite precursor which reduces the structural defects by forming larger defect-free grains. While the F-PEAI cation is used to passivate the interfacial defects, present at both perovskite HTL/ETL interfaces. Furthermore, by conducting control measurements with just bulk modification (PS), just interface modification (F-PEAI), and a combination of both, the role of individual defect passivation strategies is decoupled. As a result of simultaneous bulk as well as interfacial passivation, the modified perovskite solar cell shows the highest efficiency of 22.32% with a high <i>V</i><sub>oc</sub> of 1.14 V and fill factor of 80%. Moreover, the cells have excellent stability retaining 92% and 99% of their initial efficiency after 1008 h and 560 h under ISOS- D1 and D2 storage conditions. These results highlight the importance of simultaneous bulk and interfacial passivation for improving solar cell efficiency and stability.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"8 23","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202400658","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400658","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Defects both in bulk and at the interfaces serve as charge trapping sites for nonradiative recombination and as ion migration pathways, resulting in degradation of perovskite solar cell efficiency and stability. In this work, a strategy for simultaneous passivation of both bulk and interfacial defects is reported. For bulk passivation polystyrene (PS) is used as an additive in the perovskite precursor which reduces the structural defects by forming larger defect-free grains. While the F-PEAI cation is used to passivate the interfacial defects, present at both perovskite HTL/ETL interfaces. Furthermore, by conducting control measurements with just bulk modification (PS), just interface modification (F-PEAI), and a combination of both, the role of individual defect passivation strategies is decoupled. As a result of simultaneous bulk as well as interfacial passivation, the modified perovskite solar cell shows the highest efficiency of 22.32% with a high Voc of 1.14 V and fill factor of 80%. Moreover, the cells have excellent stability retaining 92% and 99% of their initial efficiency after 1008 h and 560 h under ISOS- D1 and D2 storage conditions. These results highlight the importance of simultaneous bulk and interfacial passivation for improving solar cell efficiency and stability.

Abstract Image

体积缺陷和界面缺陷的协同钝化提高了倒置钙钛矿太阳能电池的效率和稳定性
体缺陷和界面缺陷作为非辐射复合的电荷捕获位点和离子迁移途径,导致钙钛矿太阳能电池效率和稳定性的降低。在这项工作中,报告了一种同时钝化大块和界面缺陷的策略。聚苯乙烯(PS)作为钙钛矿前驱体的添加剂,通过形成较大的无缺陷晶粒来减少结构缺陷。而F-PEAI阳离子用于钝化界面缺陷,存在于钙钛矿html /ETL界面。此外,通过使用仅体改性(PS)、仅界面改性(F-PEAI)以及两者的组合进行控制测量,单个缺陷钝化策略的作用被解耦。改性后的钙钛矿太阳能电池效率最高,达到22.32%,Voc为1.14 V,填充系数为80%。此外,在ISOS- D1和D2条件下,在1008 h和560 h后,电池具有良好的稳定性,保持了92%和99%的初始效率。这些结果强调了同时体化和界面钝化对提高太阳能电池效率和稳定性的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar RRL
Solar RRL Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍: Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信