Accelerated solvent extraction of apomorphine from Nymphaea caerulea (Blue Water Lily) products: A proof-of-concept Green extraction for plant materials
{"title":"Accelerated solvent extraction of apomorphine from Nymphaea caerulea (Blue Water Lily) products: A proof-of-concept Green extraction for plant materials","authors":"Rohith Krishna, Anirudha Dixit, Ketan Patil, Shalvi Agrawal, Jilja Joseph, Astha Pandey, Mahipal Singh Sankhla","doi":"10.1002/appl.202400122","DOIUrl":null,"url":null,"abstract":"<p><i>Nymphaea caerulea</i> (Blue water lily) is an esthetically pleasing aquatic plant which is widely located across India and Africa. The blue water lily contains an alkaloid called apomorphine which is said to be a sedative, and a nonselective dopamine agonist and is now available in the local and online market in the form of powders and oils for various applications such as sleeping aid, anxiety reliever and sexual performance enhancer. These properties are abused by the consumption of <i>Nymphaea caerulea</i> to achieve a state of “high” which has led the categorization of the same as a novel psychoactive substance. In this paper, a rapid mass spectral analysis was performed for the preliminary screening of commercially available blue water lily products using the Waters Radian as soon as possible instrument, followed by the high performance liquid chromatography-photo diode array method development and validation of the samples for the qualitative and quantitative analysis of apomorphine. Accelerated solvent extraction as a green alternative to the conventional soxhlet extraction was used in the extraction of the plant material. The method was finally screened for its greenness using the Complex green analytical procedure index method. The method was validated with a linearity of 0.9973; limit of detection and limit of quantitation of 0.02 and 0.18 µg/mL, respectively. The method was able to detect and quantitate apomorphine in two samples from the commercially available natural products of <i>Nymphaea caerulea</i>.</p>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.202400122","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/appl.202400122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Nymphaea caerulea (Blue water lily) is an esthetically pleasing aquatic plant which is widely located across India and Africa. The blue water lily contains an alkaloid called apomorphine which is said to be a sedative, and a nonselective dopamine agonist and is now available in the local and online market in the form of powders and oils for various applications such as sleeping aid, anxiety reliever and sexual performance enhancer. These properties are abused by the consumption of Nymphaea caerulea to achieve a state of “high” which has led the categorization of the same as a novel psychoactive substance. In this paper, a rapid mass spectral analysis was performed for the preliminary screening of commercially available blue water lily products using the Waters Radian as soon as possible instrument, followed by the high performance liquid chromatography-photo diode array method development and validation of the samples for the qualitative and quantitative analysis of apomorphine. Accelerated solvent extraction as a green alternative to the conventional soxhlet extraction was used in the extraction of the plant material. The method was finally screened for its greenness using the Complex green analytical procedure index method. The method was validated with a linearity of 0.9973; limit of detection and limit of quantitation of 0.02 and 0.18 µg/mL, respectively. The method was able to detect and quantitate apomorphine in two samples from the commercially available natural products of Nymphaea caerulea.