Analyzing and Improving Conductive Networks in Commercial High-Energy Ni-rich Cathodes

IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY
Adrian Lindner, Svenja Both, Dr.-Ing. Wolfgang Menesklou, Dr. Simon Hein, Dr. Timo Danner, Prof. Dr. Arnulf Latz, Prof. Dr.-Ing. Ulrike Krewer
{"title":"Analyzing and Improving Conductive Networks in Commercial High-Energy Ni-rich Cathodes","authors":"Adrian Lindner,&nbsp;Svenja Both,&nbsp;Dr.-Ing. Wolfgang Menesklou,&nbsp;Dr. Simon Hein,&nbsp;Dr. Timo Danner,&nbsp;Prof. Dr. Arnulf Latz,&nbsp;Prof. Dr.-Ing. Ulrike Krewer","doi":"10.1002/batt.202400503","DOIUrl":null,"url":null,"abstract":"<p>Nickel-rich stoichiometries such as NMC811 have gained increasing relevance for lithium-ion-batteries in recent years due to their high specific capacity and reduced use of critical resources. However, low intrinsic electronic conductivity of NMC active materials makes the use of carbon-based additives necessary. Volume fraction and distribution of the carbon-binder-domain (CBD) have a significant impact on the electrode performance. This work combines high-resolution tomography and microstructure-resolved simulations to characterize the three-dimensional transport networks of a commercial NMC811 cathode. FIB-SEM tomography reveals that low CBD volume fractions with suboptimal distribution cause a non-percolating conductive network in the microstructure and thus unfavourably low electronic conductivity. Increasing the CBD content through virtual electrode design enables percolation and enhances electronic conductivity fundamentally. Simulations on both the real and virtually designed structures demonstrate how percolating CBD networks lead to a significantly improved energy density.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 12","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400503","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400503","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Nickel-rich stoichiometries such as NMC811 have gained increasing relevance for lithium-ion-batteries in recent years due to their high specific capacity and reduced use of critical resources. However, low intrinsic electronic conductivity of NMC active materials makes the use of carbon-based additives necessary. Volume fraction and distribution of the carbon-binder-domain (CBD) have a significant impact on the electrode performance. This work combines high-resolution tomography and microstructure-resolved simulations to characterize the three-dimensional transport networks of a commercial NMC811 cathode. FIB-SEM tomography reveals that low CBD volume fractions with suboptimal distribution cause a non-percolating conductive network in the microstructure and thus unfavourably low electronic conductivity. Increasing the CBD content through virtual electrode design enables percolation and enhances electronic conductivity fundamentally. Simulations on both the real and virtually designed structures demonstrate how percolating CBD networks lead to a significantly improved energy density.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信