Influence of Y–Bi–Co oxide doping on electrical performance of ZnO varistors based on simulation analysis

Zhengzheng Fu, Zongxi Zhang, Songhai Fan, Tao Cui, Donghui Luo, Yue Yin, Pengfei Meng, Jingke Guo
{"title":"Influence of Y–Bi–Co oxide doping on electrical performance of ZnO varistors based on simulation analysis","authors":"Zhengzheng Fu,&nbsp;Zongxi Zhang,&nbsp;Songhai Fan,&nbsp;Tao Cui,&nbsp;Donghui Luo,&nbsp;Yue Yin,&nbsp;Pengfei Meng,&nbsp;Jingke Guo","doi":"10.1002/ces2.10245","DOIUrl":null,"url":null,"abstract":"<p>ZnO varistors doped with <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Y</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>O</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation>${\\rm Y}_2{\\rm O}_3$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Bi</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>O</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation>${\\rm Bi}_2{\\rm O}_3$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Co</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>O</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation>${\\rm Co}_2{\\rm O}_3$</annotation>\n </semantics></math> were analyzed for electrical performance, microstructure, phase composition, and elemental distribution using electrical performance testing, scanning electron microscopy, X-ray diffraction, and energy dispersive spectroscopy tests. The best results were obtained with 0.5 mol% <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Y</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>O</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation>${\\rm Y}_2{\\rm O}_3$</annotation>\n </semantics></math>, 2 mol% <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Bi</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>O</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation>${\\rm Bi}_2{\\rm O}_3$</annotation>\n </semantics></math>, and 3 mol% <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Co</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>O</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation>${\\rm Co}_2{\\rm O}_3$</annotation>\n </semantics></math>, yielding a 356 V/mm voltage gradient, 0.9 <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n <mi>A</mi>\n </mrow>\n <annotation>$\\umu {\\rm A}$</annotation>\n </semantics></math> leakage current, and a nonlinear coefficient of 66.2. The Voronoi network model explained how <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Bi</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>O</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation>${\\rm Bi}_2{\\rm O}_3$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Co</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>O</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation>${\\rm Co}_2{\\rm O}_3$</annotation>\n </semantics></math> enhance Y-doped varistor performance. Grain size was identified as the primary factor affecting the voltage gradient, while the thick grain boundary phase impedance, the direct contact area ratio, surface state density, and donor density were key factors influencing the nonlinear coefficient and leakage current. The results indicate that doping with <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Bi</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>O</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation>${\\rm Bi}_2{\\rm O}_3$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Co</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>O</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation>${\\rm Co}_2{\\rm O}_3$</annotation>\n </semantics></math> significantly enhances the electrical properties of Y-doped varistors, and simulation methods effectively reveal the effect mechanisms of dopants on the varistors.</p>","PeriodicalId":13948,"journal":{"name":"International Journal of Ceramic Engineering & Science","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ces2.10245","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Ceramic Engineering & Science","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ces2.10245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

ZnO varistors doped with Y 2 O 3 ${\rm Y}_2{\rm O}_3$ , Bi 2 O 3 ${\rm Bi}_2{\rm O}_3$ , and Co 2 O 3 ${\rm Co}_2{\rm O}_3$ were analyzed for electrical performance, microstructure, phase composition, and elemental distribution using electrical performance testing, scanning electron microscopy, X-ray diffraction, and energy dispersive spectroscopy tests. The best results were obtained with 0.5 mol% Y 2 O 3 ${\rm Y}_2{\rm O}_3$ , 2 mol% Bi 2 O 3 ${\rm Bi}_2{\rm O}_3$ , and 3 mol% Co 2 O 3 ${\rm Co}_2{\rm O}_3$ , yielding a 356 V/mm voltage gradient, 0.9 μ A $\umu {\rm A}$ leakage current, and a nonlinear coefficient of 66.2. The Voronoi network model explained how Bi 2 O 3 ${\rm Bi}_2{\rm O}_3$ and Co 2 O 3 ${\rm Co}_2{\rm O}_3$ enhance Y-doped varistor performance. Grain size was identified as the primary factor affecting the voltage gradient, while the thick grain boundary phase impedance, the direct contact area ratio, surface state density, and donor density were key factors influencing the nonlinear coefficient and leakage current. The results indicate that doping with Bi 2 O 3 ${\rm Bi}_2{\rm O}_3$ and Co 2 O 3 ${\rm Co}_2{\rm O}_3$ significantly enhances the electrical properties of Y-doped varistors, and simulation methods effectively reveal the effect mechanisms of dopants on the varistors.

Abstract Image

基于仿真分析的Y-Bi-Co氧化物掺杂对ZnO压敏电阻电性能的影响
y2o3 ${\rm Y}_2{\rm O}_3$掺杂ZnO压敏电阻{\rm 0} 2{\rm 0} 3$,和Co 2 O 3$ {\rm Co}_2{\rm O}_3$的电性能、微观结构、相组成和元素分布等进行了分析。以及能量色散光谱测试。以0.5 mol% y2o3 ${\rm Y}_2{\rm O}_3$,2mol % bi2o3 ${\rm Bi}_2{\rm O}_3$,和3mol % Co 2 O 3$ {\rm Co}_2{\rm O}_3$,产生356 V/mm的电压梯度,0.9 μ A $\umu {\rm A}$漏电流,非线性系数为66.2。Voronoi网络模型解释了bi2o3 ${\rm Bi}_2{\rm O}_3$与Co 2的关系o3 ${\rm Co}_2{\rm O}_3$提高掺y压敏电阻性能。晶粒尺寸是影响电压梯度的主要因素,而厚晶界相阻抗、直接接触面积比、表面态密度和施主密度是影响非线性系数和漏电流的关键因素。结果表明,掺杂了bi2o3 ${\rm Bi}_2{\rm O}_3$和Co 2o3 ${\rm Co}_2{\rm O}_3$显著提高了y掺杂压敏电阻的电学性能,仿真方法有效揭示了掺杂物对压敏电阻的影响机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信