Central limit theorem for smooth statistics of one-dimensional free fermions

IF 1 2区 数学 Q1 MATHEMATICS
Alix Deleporte, Gaultier Lambert
{"title":"Central limit theorem for smooth statistics of one-dimensional free fermions","authors":"Alix Deleporte,&nbsp;Gaultier Lambert","doi":"10.1112/jlms.70045","DOIUrl":null,"url":null,"abstract":"<p>We consider the determinantal point processes associated with the spectral projectors of a Schrödinger operator on <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathbb {R}$</annotation>\n </semantics></math>, with a smooth confining potential. In the semiclassical limit, where the number of particles tends to infinity, we obtain a Szegő-type central limit theorem for the fluctuations of smooth linear statistics. More precisely, the Laplace transform of any statistic converges without renormalisation to a Gaussian limit with a <span></span><math>\n <semantics>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>/</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n <annotation>$H^{1/2}$</annotation>\n </semantics></math>-type variance, which depends on the potential. In the one-well (one-cut) case, using the quantum action-angle theorem and additional micro-local tools, we reduce the problem to the asymptotics of Fredholm determinants of certain approximately Toeplitz operators. In the multi-cut case, we show that for generic potentials, a similar result holds and the contributions of the different wells are independent in the limit.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70045","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70045","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the determinantal point processes associated with the spectral projectors of a Schrödinger operator on R $\mathbb {R}$ , with a smooth confining potential. In the semiclassical limit, where the number of particles tends to infinity, we obtain a Szegő-type central limit theorem for the fluctuations of smooth linear statistics. More precisely, the Laplace transform of any statistic converges without renormalisation to a Gaussian limit with a H 1 / 2 $H^{1/2}$ -type variance, which depends on the potential. In the one-well (one-cut) case, using the quantum action-angle theorem and additional micro-local tools, we reduce the problem to the asymptotics of Fredholm determinants of certain approximately Toeplitz operators. In the multi-cut case, we show that for generic potentials, a similar result holds and the contributions of the different wells are independent in the limit.

我们考虑的是与 R $\mathbb {R}$ 上的薛定谔算子谱投影相关的行列式点过程,它具有平滑的约束势。在粒子数趋于无穷大的半经典极限中,我们得到了平稳线性统计波动的塞格型中心极限定理。更准确地说,任何统计量的拉普拉斯变换都会在不进行重正化的情况下收敛到高斯极限,其方差为 H 1 / 2 $H^{1/2}$ 型,这取决于势能。在单阱(单切)情况下,利用量子作用角定理和额外的微局域工具,我们将问题简化为某些近似托普利兹算子的弗雷德霍姆行列式的渐近性。在多切情况下,我们证明了对于一般势,类似的结果成立,并且不同井的贡献在极限中是独立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信