Wave Action Conservation, Eliassen-Palm Flux and Nonacceleration Conditions Within Atmospheres of Variable Composition

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Stephen D. Eckermann
{"title":"Wave Action Conservation, Eliassen-Palm Flux and Nonacceleration Conditions Within Atmospheres of Variable Composition","authors":"Stephen D. Eckermann","doi":"10.1029/2024JD040917","DOIUrl":null,"url":null,"abstract":"<p>The foundational conservation equations of Eliassen and Palm (EP) and Bretherton and Garrett (BG) governing the pseudomomentum and action of waves in geophysical fluids are shown to be approximations that do not hold generally within atmospheres of varying mass composition, such as the Earth's thermosphere and other planetary atmospheres. Standard BG/EP conservation equations assume a fixed connection between mean-state entropy and pressure that breaks down when composition varies. New entropy-corrected (EC) forms of these equations are derived that conserve total energy and momentum in atmospheres where composition varies. Three separate and largely independent derivations are presented that all lead to the same EC forms of these equations and their associated diagnostics, such as nonacceleration conditions. Since EC forms present as corrective scaling factors to standard BG/EP equations, existing models and diagnostics are easily generalized. Representative thermospheric calculations reveal that the EC equations remove systematic energy and momentum biases of up to 40% that in turn lead steady conservative waves to grow more rapidly in amplitude with increasing altitude.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"129 24","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD040917","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The foundational conservation equations of Eliassen and Palm (EP) and Bretherton and Garrett (BG) governing the pseudomomentum and action of waves in geophysical fluids are shown to be approximations that do not hold generally within atmospheres of varying mass composition, such as the Earth's thermosphere and other planetary atmospheres. Standard BG/EP conservation equations assume a fixed connection between mean-state entropy and pressure that breaks down when composition varies. New entropy-corrected (EC) forms of these equations are derived that conserve total energy and momentum in atmospheres where composition varies. Three separate and largely independent derivations are presented that all lead to the same EC forms of these equations and their associated diagnostics, such as nonacceleration conditions. Since EC forms present as corrective scaling factors to standard BG/EP equations, existing models and diagnostics are easily generalized. Representative thermospheric calculations reveal that the EC equations remove systematic energy and momentum biases of up to 40% that in turn lead steady conservative waves to grow more rapidly in amplitude with increasing altitude.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信