Farzaneh Talebkeikhah, Yu-Cheng Lin, Jeremy S. Luterbacher
{"title":"Synthesis of High-Surface-Area Alumina using Carbon Templating and Liquid Phase Atomic Layer Deposition","authors":"Farzaneh Talebkeikhah, Yu-Cheng Lin, Jeremy S. Luterbacher","doi":"10.1002/admi.202400520","DOIUrl":null,"url":null,"abstract":"<p>Certain metal oxides exhibit unique phases and associated properties that can generally only be accessed via high temperature treatments. However, high temperature processes usually lead to surface reconstruction and pore collapse, which reduces the active surface area. In this study, a novel method for accessing phases is demonstrated at high temperature while maintaining porosity by depositing thin oxide films onto a temperature stable activated carbon template. Subsequent annealing and calcination creates the phase of interest while maintaining the porous structure. Specifically, stoichiometrically limited liquid phase atomic layer deposition is used to deposit 6, 9, 12 and 15 layers of amorphous alumina, which, following high temperature treatment, led to a mixture of α and δ phases with surface areas of 186 and 146 m<sup>2</sup> g<sup>−1</sup> for 6 and 9 layers respectively. Pure α alumina can also be achieved with high surface areas of 76 and 45 m<sup>2</sup> g<sup>−1</sup> for 12 and 15 layers. Importantly, all the samples retained the porosity imparted by the carbon structure, with primarily meso and macro pores. Furthermore, different metal oxides are also deposited onto the activated carbon surface, including ZnO, TiO<sub>2</sub>, ZrO<sub>2</sub>, and Ga<sub>2</sub>O<sub>3</sub> illustrating this templating concept can also be applied to different materials.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"11 36","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400520","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400520","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Certain metal oxides exhibit unique phases and associated properties that can generally only be accessed via high temperature treatments. However, high temperature processes usually lead to surface reconstruction and pore collapse, which reduces the active surface area. In this study, a novel method for accessing phases is demonstrated at high temperature while maintaining porosity by depositing thin oxide films onto a temperature stable activated carbon template. Subsequent annealing and calcination creates the phase of interest while maintaining the porous structure. Specifically, stoichiometrically limited liquid phase atomic layer deposition is used to deposit 6, 9, 12 and 15 layers of amorphous alumina, which, following high temperature treatment, led to a mixture of α and δ phases with surface areas of 186 and 146 m2 g−1 for 6 and 9 layers respectively. Pure α alumina can also be achieved with high surface areas of 76 and 45 m2 g−1 for 12 and 15 layers. Importantly, all the samples retained the porosity imparted by the carbon structure, with primarily meso and macro pores. Furthermore, different metal oxides are also deposited onto the activated carbon surface, including ZnO, TiO2, ZrO2, and Ga2O3 illustrating this templating concept can also be applied to different materials.
期刊介绍:
Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018.
The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface.
Advanced Materials Interfaces covers all topics in interface-related research:
Oil / water separation,
Applications of nanostructured materials,
2D materials and heterostructures,
Surfaces and interfaces in organic electronic devices,
Catalysis and membranes,
Self-assembly and nanopatterned surfaces,
Composite and coating materials,
Biointerfaces for technical and medical applications.
Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.