Aerosol Direct Radiative Effects From Extreme Fire Events in Australia, California and Siberia Occurring in 2019–2020

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Thomas Vescovini, Pierre Nabat, Marc Mallet, Fabien Solmon
{"title":"Aerosol Direct Radiative Effects From Extreme Fire Events in Australia, California and Siberia Occurring in 2019–2020","authors":"Thomas Vescovini,&nbsp;Pierre Nabat,&nbsp;Marc Mallet,&nbsp;Fabien Solmon","doi":"10.1029/2024JD041002","DOIUrl":null,"url":null,"abstract":"<p>This study aims at investigating the biomass burning aerosols (BBA) from 2019 to 2020 extreme wildfires in California, Australia and Siberia, in terms of aerosol characteristics and direct radiative effect. This study is based on the comparison between global climate simulations (ARPEGE-Climat) and reference aerosol data sets (reanalyzes, ground-based observations and satellite data). First, our results demonstrate the need to constrain the injection heights in the model in order to realistically represent extinction vertical profiles observed during fire events, both in the troposphere and in the lower stratosphere due to the contribution of pyro-convection. Without specific vertical emission profiles for fires, the ARPEGE-Climat simulations fail in representing aerosol extinction vertical profiles. For each region studied, the modeled aerosol optical depth (AOD) is extremely high (above 3 at 550 nm). An important long-range transport of BBA emitted in Australia and California is shown, with high AOD further from sources. These extremely dense plumes significantly perturb the surface incident solar radiation and exert a large direct (surface) shortwave radiative effect up to −13, −29 and −17 W <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>m</mi>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\mathrm{m}}^{-2}$</annotation>\n </semantics></math> on monthly average over Australia (January 2020), California (September 2020) and Siberia (August 2019), respectively. A noteworthy positive BBA direct radiative effect (warming) is found at the top of the atmosphere, when dense and strongly absorbing smoke plumes are advected over cloudy oceanic regions, characterized by high surface albedo. This absorption leads to an increase of the solar heating rate up to 0.3 K <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mtext>day</mtext>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\text{day}}^{-1}$</annotation>\n </semantics></math> with possible implications on the atmospheric temperature and dynamics.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"129 24","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD041002","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims at investigating the biomass burning aerosols (BBA) from 2019 to 2020 extreme wildfires in California, Australia and Siberia, in terms of aerosol characteristics and direct radiative effect. This study is based on the comparison between global climate simulations (ARPEGE-Climat) and reference aerosol data sets (reanalyzes, ground-based observations and satellite data). First, our results demonstrate the need to constrain the injection heights in the model in order to realistically represent extinction vertical profiles observed during fire events, both in the troposphere and in the lower stratosphere due to the contribution of pyro-convection. Without specific vertical emission profiles for fires, the ARPEGE-Climat simulations fail in representing aerosol extinction vertical profiles. For each region studied, the modeled aerosol optical depth (AOD) is extremely high (above 3 at 550 nm). An important long-range transport of BBA emitted in Australia and California is shown, with high AOD further from sources. These extremely dense plumes significantly perturb the surface incident solar radiation and exert a large direct (surface) shortwave radiative effect up to −13, −29 and −17 W m 2 ${\mathrm{m}}^{-2}$ on monthly average over Australia (January 2020), California (September 2020) and Siberia (August 2019), respectively. A noteworthy positive BBA direct radiative effect (warming) is found at the top of the atmosphere, when dense and strongly absorbing smoke plumes are advected over cloudy oceanic regions, characterized by high surface albedo. This absorption leads to an increase of the solar heating rate up to 0.3 K day 1 ${\text{day}}^{-1}$ with possible implications on the atmospheric temperature and dynamics.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信