The Ekström–Persson conjecture regarding random covering sets

IF 1 2区 数学 Q1 MATHEMATICS
Esa Järvenpää, Maarit Järvenpää, Markus Myllyoja, Örjan Stenflo
{"title":"The Ekström–Persson conjecture regarding random covering sets","authors":"Esa Järvenpää,&nbsp;Maarit Järvenpää,&nbsp;Markus Myllyoja,&nbsp;Örjan Stenflo","doi":"10.1112/jlms.70058","DOIUrl":null,"url":null,"abstract":"<p>We consider the Hausdorff dimension of random covering sets formed by balls with centres chosen independently at random according to an arbitrary Borel probability measure on <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>d</mi>\n </msup>\n <annotation>$\\mathbb {R}^d$</annotation>\n </semantics></math> and radii given by a deterministic sequence tending to zero. We prove, for a certain parameter range, the conjecture by Ekström and Persson concerning the exact value of the dimension in the special case of radii <span></span><math>\n <semantics>\n <msubsup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>n</mi>\n <mrow>\n <mo>−</mo>\n <mi>α</mi>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <mi>∞</mi>\n </msubsup>\n <annotation>$(n^{-\\alpha })_{n=1}^\\infty$</annotation>\n </semantics></math>. For balls with an arbitrary sequence of radii, we find sharp bounds for the dimension and show that the natural extension of the Ekström–Persson conjecture is not true in this case. Finally, we construct examples demonstrating that there does not exist a dimension formula involving only the lower and upper local dimensions of the measure and a critical parameter determined by the sequence of radii.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70058","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70058","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the Hausdorff dimension of random covering sets formed by balls with centres chosen independently at random according to an arbitrary Borel probability measure on R d $\mathbb {R}^d$ and radii given by a deterministic sequence tending to zero. We prove, for a certain parameter range, the conjecture by Ekström and Persson concerning the exact value of the dimension in the special case of radii ( n α ) n = 1 $(n^{-\alpha })_{n=1}^\infty$ . For balls with an arbitrary sequence of radii, we find sharp bounds for the dimension and show that the natural extension of the Ekström–Persson conjecture is not true in this case. Finally, we construct examples demonstrating that there does not exist a dimension formula involving only the lower and upper local dimensions of the measure and a critical parameter determined by the sequence of radii.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信