{"title":"IDHNet: Ultra-Short-Term Wind Power Forecasting With IVMD–DCInformer–HSSA Network","authors":"Wei Li, Lu Gao, Fei Zhang, XiaoYing Ren, Ling Qin","doi":"10.1002/ese3.1968","DOIUrl":null,"url":null,"abstract":"<p>The variability and unpredictability of wind power generation present significant challenges for grid management and planning. Enhancing the accuracy of wind power forecasting is crucial for improving the reliability of renewable energy systems. To enhance the accuracy of temporal wind power predictions, the IVMD–DCInformer–HSSA framework has been introduced. Initially, the original wind power data is decomposed into multiple intrinsic mode function (IMF) components using the improved variational mode decomposition (IVMD) technique. Subsequently, the Sparrow search algorithm (HSSA) is employed to optimize the parameters of the enhanced Informer deep neural network, which are then integrated into the improved Informer model. The predictions of each IMF component resulting from the IVMD decomposition are then combined to generate the final prediction outcome. The experimental results show that the <i>R</i>-squared value of the proposed combined model is increased to 0.9903, and the accuracy is increased by 1%–3% compared with other models, which has a good prediction effect.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"12 12","pages":"5566-5589"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1968","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.1968","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The variability and unpredictability of wind power generation present significant challenges for grid management and planning. Enhancing the accuracy of wind power forecasting is crucial for improving the reliability of renewable energy systems. To enhance the accuracy of temporal wind power predictions, the IVMD–DCInformer–HSSA framework has been introduced. Initially, the original wind power data is decomposed into multiple intrinsic mode function (IMF) components using the improved variational mode decomposition (IVMD) technique. Subsequently, the Sparrow search algorithm (HSSA) is employed to optimize the parameters of the enhanced Informer deep neural network, which are then integrated into the improved Informer model. The predictions of each IMF component resulting from the IVMD decomposition are then combined to generate the final prediction outcome. The experimental results show that the R-squared value of the proposed combined model is increased to 0.9903, and the accuracy is increased by 1%–3% compared with other models, which has a good prediction effect.
期刊介绍:
Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.