Hailong Zhao, Long Xu, Ziqing Liu, Shanglin Wu, Houjian Gong, Yajun Li, Hai Sun, Mingzhe Dong
{"title":"Experimental Study of Imbibition Characteristics During the Soaking Stage After Fracturing in Tight Reservoirs","authors":"Hailong Zhao, Long Xu, Ziqing Liu, Shanglin Wu, Houjian Gong, Yajun Li, Hai Sun, Mingzhe Dong","doi":"10.1002/ese3.1918","DOIUrl":null,"url":null,"abstract":"<p>The soaking stage is vital for oil production after fracturing in tight reservoirs. However, the roles and contributions of spontaneous imbibition (SI) and forced displacement imbibition (FDI) during this stage are poorly understood. This study gave an in-depth insight on the imbibition characteristics during the soaking stage under non-zero initial water saturation conditions by static soaking and dynamic waterflooding of the core. The results indicate that the fluid absorbed by SI in the core is short-ranged. After SI, there is still a substantial amount of remain oil (30.7%) that can be displaced by subsequent FDI. SI considerably drives oil recovery in small pores (10–100 nm), whereas FDI is more effective in large pores (500–1000 nm). Controlling the rate of fracturing water flowing into the matrix from the fracture can enhance the combined effect of SI and FDI. For reservoirs with high initial water saturation, enhancing FDI effect during the soaking stage is favorable for oil production.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"12 12","pages":"5418-5428"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1918","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.1918","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The soaking stage is vital for oil production after fracturing in tight reservoirs. However, the roles and contributions of spontaneous imbibition (SI) and forced displacement imbibition (FDI) during this stage are poorly understood. This study gave an in-depth insight on the imbibition characteristics during the soaking stage under non-zero initial water saturation conditions by static soaking and dynamic waterflooding of the core. The results indicate that the fluid absorbed by SI in the core is short-ranged. After SI, there is still a substantial amount of remain oil (30.7%) that can be displaced by subsequent FDI. SI considerably drives oil recovery in small pores (10–100 nm), whereas FDI is more effective in large pores (500–1000 nm). Controlling the rate of fracturing water flowing into the matrix from the fracture can enhance the combined effect of SI and FDI. For reservoirs with high initial water saturation, enhancing FDI effect during the soaking stage is favorable for oil production.
期刊介绍:
Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.