Bei Qin, Xiao Chang, Jiayang Pang, Zhishun Yu, Jitao Liu, Wanquan Deng, Li Zhang, Bing Yao, Xiaobing Liu
{"title":"Advanced high-precision methodology for assessing sediment erosion in Pelton turbine buckets","authors":"Bei Qin, Xiao Chang, Jiayang Pang, Zhishun Yu, Jitao Liu, Wanquan Deng, Li Zhang, Bing Yao, Xiaobing Liu","doi":"10.1002/ese3.1899","DOIUrl":null,"url":null,"abstract":"<p>Developing highly accurate sediment erosion testing methods for Pelton turbine overflow components is challenging due to their irregularly curved surfaces. In this study, we designed a method to evaluate the sediment erosion of the Pelton turbine bucket using test blocks with an accuracy of 0.0001 g. In addition, we conducted sediment erosion tests on a model Pelton turbine and conducted an in-depth study on the installation design of the turbine runner and bucket, the design of the erosion test blocks, and the arrangement; we analyzed sediment abrasion distribution on the bucket's working surface. Our test results show that the bucket splitter edge, as well as the root of the working surface, are heavily worn. The maximum erosion rate of the working face is 0.7669 μm/h, and the maximum erosion rate of the splitter edge is close to 5 μm/h, which is highly consistent with the distribution of sediment erosion observed in Pelton turbines operating under sandy river conditions. This test method is essential for examining sediment erosion in Pelton turbines.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"12 12","pages":"5410-5417"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1899","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.1899","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Developing highly accurate sediment erosion testing methods for Pelton turbine overflow components is challenging due to their irregularly curved surfaces. In this study, we designed a method to evaluate the sediment erosion of the Pelton turbine bucket using test blocks with an accuracy of 0.0001 g. In addition, we conducted sediment erosion tests on a model Pelton turbine and conducted an in-depth study on the installation design of the turbine runner and bucket, the design of the erosion test blocks, and the arrangement; we analyzed sediment abrasion distribution on the bucket's working surface. Our test results show that the bucket splitter edge, as well as the root of the working surface, are heavily worn. The maximum erosion rate of the working face is 0.7669 μm/h, and the maximum erosion rate of the splitter edge is close to 5 μm/h, which is highly consistent with the distribution of sediment erosion observed in Pelton turbines operating under sandy river conditions. This test method is essential for examining sediment erosion in Pelton turbines.
期刊介绍:
Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.