Detecting, Attributing, and Projecting Global Marine Ecosystem and Fisheries Change: FishMIP 2.0

IF 7.3 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Earths Future Pub Date : 2024-12-21 DOI:10.1029/2023EF004402
Julia L. Blanchard, Camilla Novaglio, Olivier Maury, Cheryl S. Harrison, Colleen M. Petrik, Denisse Fierro-Arcos, Kelly Ortega-Cisneros, Andrea Bryndum-Buchholz, Tyler D. Eddy, Ryan Heneghan, Kelsey Roberts, Jacob Schewe, Daniele Bianchi, Jerome Guiet, P. Daniel van Denderen, Juliano Palacios-Abrantes, Xiao Liu, Charles A. Stock, Yannick Rousseau, Matthias Büchner, Ezekiel O. Adekoya, Cathy Bulman, William Cheung, Villy Christensen, Marta Coll, Leonardo Capitani, Samik Datta, Elizabeth A. Fulton, Alba Fuster, Victoria Garza, Matthieu Lengaigne, Max Lindmark, Kieran Murphy, Jazel Ouled-Cheikh, Sowdamini S. Prasad, Ricardo Oliveros-Ramos, Jonathan C. Reum, Nina Rynne, Kim J. N. Scherrer, Yunne-Jai Shin, Jeroen Steenbeek, Phoebe Woodworth-Jefcoats, Yan-Lun Wu, Derek P. Tittensor
{"title":"Detecting, Attributing, and Projecting Global Marine Ecosystem and Fisheries Change: FishMIP 2.0","authors":"Julia L. Blanchard,&nbsp;Camilla Novaglio,&nbsp;Olivier Maury,&nbsp;Cheryl S. Harrison,&nbsp;Colleen M. Petrik,&nbsp;Denisse Fierro-Arcos,&nbsp;Kelly Ortega-Cisneros,&nbsp;Andrea Bryndum-Buchholz,&nbsp;Tyler D. Eddy,&nbsp;Ryan Heneghan,&nbsp;Kelsey Roberts,&nbsp;Jacob Schewe,&nbsp;Daniele Bianchi,&nbsp;Jerome Guiet,&nbsp;P. Daniel van Denderen,&nbsp;Juliano Palacios-Abrantes,&nbsp;Xiao Liu,&nbsp;Charles A. Stock,&nbsp;Yannick Rousseau,&nbsp;Matthias Büchner,&nbsp;Ezekiel O. Adekoya,&nbsp;Cathy Bulman,&nbsp;William Cheung,&nbsp;Villy Christensen,&nbsp;Marta Coll,&nbsp;Leonardo Capitani,&nbsp;Samik Datta,&nbsp;Elizabeth A. Fulton,&nbsp;Alba Fuster,&nbsp;Victoria Garza,&nbsp;Matthieu Lengaigne,&nbsp;Max Lindmark,&nbsp;Kieran Murphy,&nbsp;Jazel Ouled-Cheikh,&nbsp;Sowdamini S. Prasad,&nbsp;Ricardo Oliveros-Ramos,&nbsp;Jonathan C. Reum,&nbsp;Nina Rynne,&nbsp;Kim J. N. Scherrer,&nbsp;Yunne-Jai Shin,&nbsp;Jeroen Steenbeek,&nbsp;Phoebe Woodworth-Jefcoats,&nbsp;Yan-Lun Wu,&nbsp;Derek P. Tittensor","doi":"10.1029/2023EF004402","DOIUrl":null,"url":null,"abstract":"<p>There is an urgent need for models that can robustly detect past and project future ecosystem changes and risks to the services that they provide to people. The Fisheries and Marine Ecosystem Model Intercomparison Project (FishMIP) was established to develop model ensembles for projecting long-term impacts of climate change on fisheries and marine ecosystems while informing policy at spatio-temporal scales relevant to the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) framework. While contributing FishMIP models have improved over time, large uncertainties in projections remain, particularly in coastal and shelf seas where most of the world's fisheries occur. Furthermore, previous FishMIP climate impact projections have been limited by a lack of global standardized historical fishing data, low resolution of coastal processes, and uneven capabilities across the FishMIP community to dynamically model fisheries. These features are needed to evaluate how reliably the FishMIP ensemble captures past ecosystem states - a crucial step for building confidence in future projections. To address these issues, we have developed FishMIP 2.0 comprising a two-track framework for: (a) Model evaluation and attribution of past changes and (b) future climate and socioeconomic scenario projections. Key advances include improved historical climate forcing, which captures oceanographic features not previously resolved, and standardized global fishing forcing to test fishing effects systematically across models. FishMIP 2.0 is a crucial step toward a detection and attribution framework for changing marine ecosystems and toward enhanced policy relevance through increased confidence in future ensemble projections. Our results will help elucidate pathways toward achieving sustainable development goals.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":"12 12","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023EF004402","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earths Future","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023EF004402","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

There is an urgent need for models that can robustly detect past and project future ecosystem changes and risks to the services that they provide to people. The Fisheries and Marine Ecosystem Model Intercomparison Project (FishMIP) was established to develop model ensembles for projecting long-term impacts of climate change on fisheries and marine ecosystems while informing policy at spatio-temporal scales relevant to the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) framework. While contributing FishMIP models have improved over time, large uncertainties in projections remain, particularly in coastal and shelf seas where most of the world's fisheries occur. Furthermore, previous FishMIP climate impact projections have been limited by a lack of global standardized historical fishing data, low resolution of coastal processes, and uneven capabilities across the FishMIP community to dynamically model fisheries. These features are needed to evaluate how reliably the FishMIP ensemble captures past ecosystem states - a crucial step for building confidence in future projections. To address these issues, we have developed FishMIP 2.0 comprising a two-track framework for: (a) Model evaluation and attribution of past changes and (b) future climate and socioeconomic scenario projections. Key advances include improved historical climate forcing, which captures oceanographic features not previously resolved, and standardized global fishing forcing to test fishing effects systematically across models. FishMIP 2.0 is a crucial step toward a detection and attribution framework for changing marine ecosystems and toward enhanced policy relevance through increased confidence in future ensemble projections. Our results will help elucidate pathways toward achieving sustainable development goals.

Abstract Image

检测、归因和预测全球海洋生态系统和渔业变化:FishMIP 2.0
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Earths Future
Earths Future ENVIRONMENTAL SCIENCESGEOSCIENCES, MULTIDI-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
11.00
自引率
7.30%
发文量
260
审稿时长
16 weeks
期刊介绍: Earth’s Future: A transdisciplinary open access journal, Earth’s Future focuses on the state of the Earth and the prediction of the planet’s future. By publishing peer-reviewed articles as well as editorials, essays, reviews, and commentaries, this journal will be the preeminent scholarly resource on the Anthropocene. It will also help assess the risks and opportunities associated with environmental changes and challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信