{"title":"Dynamic Instability Mechanism and Stress Staged Evolution of Gob-Side Entry During Cross-Fault Mining for Thick Coal Seam","authors":"Xuesheng Liu, Yudong Gao, Zhihan Shi, Xuebin Li, Hongxi Pei, Yu Zhang, Deyuan Fan","doi":"10.1002/ese3.1973","DOIUrl":null,"url":null,"abstract":"<p>During cross-fault mining, the stress concentration in the surrounding rock of thick coal seam gob-side entry was prone to dynamic disasters. Based on the in-site geological conditions of the No. 6305 coal face of the Xinjulong coal mine, a FLAC3D numerical simulation model was established to research the failure and stress staged evolution of coal pillar in the gob-side entry during cross-fault mining. By analyzing the relation of surrounding rock structure, the mechanical models of different stages during cross-fault mining were established. Furthermore, the mechanical mechanism of coal pillars' dynamic instability under the influence of fault activation was revealed, and the mechanical criterion <i>n</i> was given. The control technology of ‘asymmetric strengthening support + roof cutting and pressure relief’ was proposed and designed. Field practice showed that the maximum roof-to-floor and two-side displacements of the gob-side entry are 249.3 mm and 150.4 mm, and the force of anchor cable is 184.2 kN. This research provided theoretical guidance and reference for the stability control of roadways within the influence range of fault under deep mining conditions.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"12 12","pages":"5602-5616"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1973","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.1973","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
During cross-fault mining, the stress concentration in the surrounding rock of thick coal seam gob-side entry was prone to dynamic disasters. Based on the in-site geological conditions of the No. 6305 coal face of the Xinjulong coal mine, a FLAC3D numerical simulation model was established to research the failure and stress staged evolution of coal pillar in the gob-side entry during cross-fault mining. By analyzing the relation of surrounding rock structure, the mechanical models of different stages during cross-fault mining were established. Furthermore, the mechanical mechanism of coal pillars' dynamic instability under the influence of fault activation was revealed, and the mechanical criterion n was given. The control technology of ‘asymmetric strengthening support + roof cutting and pressure relief’ was proposed and designed. Field practice showed that the maximum roof-to-floor and two-side displacements of the gob-side entry are 249.3 mm and 150.4 mm, and the force of anchor cable is 184.2 kN. This research provided theoretical guidance and reference for the stability control of roadways within the influence range of fault under deep mining conditions.
期刊介绍:
Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.