Enhancing Satellite Link Security Against Drone Eavesdropping Through Cooperative Communication

IF 0.9 4区 计算机科学 Q3 ENGINEERING, AEROSPACE
Rajnish Kumar, Shlomi Arnon
{"title":"Enhancing Satellite Link Security Against Drone Eavesdropping Through Cooperative Communication","authors":"Rajnish Kumar,&nbsp;Shlomi Arnon","doi":"10.1002/sat.1538","DOIUrl":null,"url":null,"abstract":"<p>Integrated satellite terrestrial networks (ISTNs) are emerging as a promising next-generation communication technology, for example, B5G and 6G, with low-earth orbit (LEO) satellites playing a growing role. However, the complex and unique characteristics of ISTNs make them more susceptible to cyberattacks. Recently, the use of drones for public and private services has increased the risk of eavesdropping on LEO satellite links. Such scenario presents an extremely challenging environment due to dynamic nature of LEO satellite and drone along with atmospheric attenuation at sub-THz frequencies. This study proposes a novel adaptive power-bandwidth cooperative scheme designed to mitigate the likelihood of eavesdropping attacks on LEO satellite links communicating with a ground station when a drone is within the line of sight. The mathematical algorithm dynamically adapts the resources to maximize the normalized secrecy capacity in this challenging scenario while maintaining a reasonable signal-to-noise ratio (SNR) at the legitimate receiver. The adaptive scheme involves strategic cooperation with a nearby terrestrial third party to amplify and forward the satellite signal to the ground station receiver. The simulation results demonstrate the effectiveness of the proposed algorithm, showing significant improvements (&gt; 70%) compared to the non-adaptive scheme over a wide range of elevation angles.</p>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"43 1","pages":"10-22"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sat.1538","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Satellite Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/sat.1538","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

Integrated satellite terrestrial networks (ISTNs) are emerging as a promising next-generation communication technology, for example, B5G and 6G, with low-earth orbit (LEO) satellites playing a growing role. However, the complex and unique characteristics of ISTNs make them more susceptible to cyberattacks. Recently, the use of drones for public and private services has increased the risk of eavesdropping on LEO satellite links. Such scenario presents an extremely challenging environment due to dynamic nature of LEO satellite and drone along with atmospheric attenuation at sub-THz frequencies. This study proposes a novel adaptive power-bandwidth cooperative scheme designed to mitigate the likelihood of eavesdropping attacks on LEO satellite links communicating with a ground station when a drone is within the line of sight. The mathematical algorithm dynamically adapts the resources to maximize the normalized secrecy capacity in this challenging scenario while maintaining a reasonable signal-to-noise ratio (SNR) at the legitimate receiver. The adaptive scheme involves strategic cooperation with a nearby terrestrial third party to amplify and forward the satellite signal to the ground station receiver. The simulation results demonstrate the effectiveness of the proposed algorithm, showing significant improvements (> 70%) compared to the non-adaptive scheme over a wide range of elevation angles.

Abstract Image

通过协同通信增强卫星链路安全防范无人机窃听
综合卫星地面网络(istn)正在成为有前景的下一代通信技术,例如B5G和6G,低地球轨道(LEO)卫星发挥着越来越大的作用。然而,istn的复杂性和独特性使其更容易受到网络攻击。最近,在公共和私人服务中使用无人机增加了窃听低轨道卫星链路的风险。由于低轨道卫星和无人机的动态特性以及亚太赫兹频率的大气衰减,这种情况呈现出极具挑战性的环境。本研究提出了一种新的自适应功率带宽合作方案,旨在降低无人机在视线范围内与地面站通信的LEO卫星链路遭受窃听攻击的可能性。该数学算法动态调整资源,以在这种具有挑战性的场景中最大化规范化保密能力,同时在合法接收端保持合理的信噪比(SNR)。自适应方案涉及与附近的地面第三方进行战略合作,将卫星信号放大并转发给地面站接收机。仿真结果证明了该算法的有效性,在大范围的仰角范围内,与非自适应方案相比,该算法有显著的改进(> 70%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
5.90%
发文量
31
审稿时长
>12 weeks
期刊介绍: The journal covers all aspects of the theory, practice and operation of satellite systems and networks. Papers must address some aspect of satellite systems or their applications. Topics covered include: -Satellite communication and broadcast systems- Satellite navigation and positioning systems- Satellite networks and networking- Hybrid systems- Equipment-earth stations/terminals, payloads, launchers and components- Description of new systems, operations and trials- Planning and operations- Performance analysis- Interoperability- Propagation and interference- Enabling technologies-coding/modulation/signal processing, etc.- Mobile/Broadcast/Navigation/fixed services- Service provision, marketing, economics and business aspects- Standards and regulation- Network protocols
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信