Anatomy of a deep Piedmont critical zone: Evaluating hypotheses on regolith depth controls through comparison of ridge and valley boreholes

IF 2.8 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL
Cassandra L. Cosans, Jorden L. Hayes, Bradley J. Carr, Steven Holbrook, Ciaran J. Harman
{"title":"Anatomy of a deep Piedmont critical zone: Evaluating hypotheses on regolith depth controls through comparison of ridge and valley boreholes","authors":"Cassandra L. Cosans,&nbsp;Jorden L. Hayes,&nbsp;Bradley J. Carr,&nbsp;Steven Holbrook,&nbsp;Ciaran J. Harman","doi":"10.1002/esp.6034","DOIUrl":null,"url":null,"abstract":"<p>Controls on the physical and chemical architecture of the subsurface critical zone are somewhat controversial, with multiple hypotheses proposed to account for variations in the depth of weathering between sites, and with landscape position at a site. In the Piedmont region of the Mid-Atlantic US weathering of crystalline bedrock has been observed to extend tens of meters below the surface and groundwater in a'bow-tie’ shape – i.e. weathering extends to lower elevations below ridges than below channels. The chemical and physical structure of a hillslope transect in the Maryland Piedmont was explored with a 45 m borehole in the ridge, as well as shallow bedrock boreholes at the toe of the slope and valley. Chemical weathering fronts were characterized using elemental abundances and mineralogical analysis. The ridge borehole did not extend deeper than the chemically and physically weathered rock. Surface and borehole geophysics and density measurements were used to characterize the weathered rock and saprolite. Na and Ca results suggest that plagioclase feldspar weathering is similar between samples collected from 45 m under the ridge and 2.2 m under the valley bottom. A narrow Fe oxidation garnet weathering front co-insides with the transition from weathered bedrock to saprolite, suggesting that this reaction may generate initial saprolite porosity. Muscovite weathering co-occurs with complete depletion of plagioclase a few meters above the Fe oxidation front. These nested weathering fronts in the saprolite appear to follow a subdued version of the surface topography. The location and shape of the nested saprolite weathering fronts may be controlled by the feedback between the transport of reactants and solutes and reaction-generated porosity, consistent with the conceptual “valve” hypothesis. Differing dominant control mechanisms on deep bedrock weathering and saprolite initiating reactions may explain the thickness and structure of the critical zone at our site.</p>","PeriodicalId":11408,"journal":{"name":"Earth Surface Processes and Landforms","volume":"49 15","pages":"5254-5268"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Surface Processes and Landforms","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/esp.6034","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Controls on the physical and chemical architecture of the subsurface critical zone are somewhat controversial, with multiple hypotheses proposed to account for variations in the depth of weathering between sites, and with landscape position at a site. In the Piedmont region of the Mid-Atlantic US weathering of crystalline bedrock has been observed to extend tens of meters below the surface and groundwater in a'bow-tie’ shape – i.e. weathering extends to lower elevations below ridges than below channels. The chemical and physical structure of a hillslope transect in the Maryland Piedmont was explored with a 45 m borehole in the ridge, as well as shallow bedrock boreholes at the toe of the slope and valley. Chemical weathering fronts were characterized using elemental abundances and mineralogical analysis. The ridge borehole did not extend deeper than the chemically and physically weathered rock. Surface and borehole geophysics and density measurements were used to characterize the weathered rock and saprolite. Na and Ca results suggest that plagioclase feldspar weathering is similar between samples collected from 45 m under the ridge and 2.2 m under the valley bottom. A narrow Fe oxidation garnet weathering front co-insides with the transition from weathered bedrock to saprolite, suggesting that this reaction may generate initial saprolite porosity. Muscovite weathering co-occurs with complete depletion of plagioclase a few meters above the Fe oxidation front. These nested weathering fronts in the saprolite appear to follow a subdued version of the surface topography. The location and shape of the nested saprolite weathering fronts may be controlled by the feedback between the transport of reactants and solutes and reaction-generated porosity, consistent with the conceptual “valve” hypothesis. Differing dominant control mechanisms on deep bedrock weathering and saprolite initiating reactions may explain the thickness and structure of the critical zone at our site.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Earth Surface Processes and Landforms
Earth Surface Processes and Landforms 地学-地球科学综合
CiteScore
6.40
自引率
12.10%
发文量
215
审稿时长
4 months
期刊介绍: Earth Surface Processes and Landforms is an interdisciplinary international journal concerned with: the interactions between surface processes and landforms and landscapes; that lead to physical, chemical and biological changes; and which in turn create; current landscapes and the geological record of past landscapes. Its focus is core to both physical geographical and geological communities, and also the wider geosciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信