Job Scheduling in Hybrid Clouds With Privacy Constraints: A Deep Reinforcement Learning Approach

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Haoyang He, Yan Gu, Qingzhi Liu, Hao Wu, Long Cheng
{"title":"Job Scheduling in Hybrid Clouds With Privacy Constraints: A Deep Reinforcement Learning Approach","authors":"Haoyang He,&nbsp;Yan Gu,&nbsp;Qingzhi Liu,&nbsp;Hao Wu,&nbsp;Long Cheng","doi":"10.1002/cpe.8307","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>With the proliferation of cloud computing and the escalating demand for extensive data processing capabilities, an increasing number of enterprises are embracing hybrid cloud solutions. However, as more businesses move toward hybrid clouds, the need for effective solutions to privacy and security concerns becomes increasingly important. Although current scheduling approaches for cloud computing have addressed privacy protection to some extent, few have adequately considered the unique challenges posed by hybrid clouds. To address this gap, we propose a novel approach for scheduling jobs in hybrid clouds that prioritizes privacy protection. Our approach, called PH-DRL, leverages Deep Reinforcement Learning (DRL) to intelligently allocate jobs to virtual machines, optimizing both privacy and Quality of Service (QoS), while minimizing response time. We present the detailed implementation of our approach and our experimental results demonstrate the superior performance of PH-DRL in terms of privacy protection compared to existing methods.</p>\n </div>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"37 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.8307","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

With the proliferation of cloud computing and the escalating demand for extensive data processing capabilities, an increasing number of enterprises are embracing hybrid cloud solutions. However, as more businesses move toward hybrid clouds, the need for effective solutions to privacy and security concerns becomes increasingly important. Although current scheduling approaches for cloud computing have addressed privacy protection to some extent, few have adequately considered the unique challenges posed by hybrid clouds. To address this gap, we propose a novel approach for scheduling jobs in hybrid clouds that prioritizes privacy protection. Our approach, called PH-DRL, leverages Deep Reinforcement Learning (DRL) to intelligently allocate jobs to virtual machines, optimizing both privacy and Quality of Service (QoS), while minimizing response time. We present the detailed implementation of our approach and our experimental results demonstrate the superior performance of PH-DRL in terms of privacy protection compared to existing methods.

随着云计算的普及和对广泛数据处理能力需求的不断升级,越来越多的企业开始采用混合云解决方案。然而,随着越来越多的企业转向混合云,有效解决隐私和安全问题的需求变得越来越重要。虽然目前的云计算调度方法在一定程度上解决了隐私保护问题,但很少有方法充分考虑到混合云带来的独特挑战。为了弥补这一不足,我们提出了一种优先考虑隐私保护的混合云作业调度新方法。我们的方法被称为 PH-DRL,它利用深度强化学习(DRL)将作业智能地分配给虚拟机,同时优化隐私和服务质量(QoS),并最大限度地缩短响应时间。我们介绍了该方法的详细实现过程,实验结果表明,与现有方法相比,PH-DRL 在隐私保护方面表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Concurrency and Computation-Practice & Experience
Concurrency and Computation-Practice & Experience 工程技术-计算机:理论方法
CiteScore
5.00
自引率
10.00%
发文量
664
审稿时长
9.6 months
期刊介绍: Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of: Parallel and distributed computing; High-performance computing; Computational and data science; Artificial intelligence and machine learning; Big data applications, algorithms, and systems; Network science; Ontologies and semantics; Security and privacy; Cloud/edge/fog computing; Green computing; and Quantum computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信