Andreas Fell, Martin Bivour, Christoph Messmer, Martin Hermle
{"title":"Is Shunt Quenching Relevant to Minimize Shunt Losses in Perovskite–Silicon Tandem Solar Cells?","authors":"Andreas Fell, Martin Bivour, Christoph Messmer, Martin Hermle","doi":"10.1002/solr.202400571","DOIUrl":null,"url":null,"abstract":"<p>One challenge in thin-film based solar cells, including perovskite-silicon tandem cells, is the defect-free deposition of the thin-film layers. Such defects can result in high local parasitic current losses, that is, local shunt spots. Depending on the nature of the defects, their geometrical distribution can either be microscopic, for example, induced by texture morphology, or macroscopic, for example, induced by particles during processing. Instead of avoiding the defects themselves, so-called shunt-quenching methods have been proposed to mitigate the associated efficiency loss. This work investigates the following recently suggested methods: 1) a deliberate current mismatch; and 2) engineering the resistive properties of the intermediate layers between the subcells to electrically isolate the shunt. A comprehensive 3D device simulation study is presented to quantitatively analyze the (in)effectiveness of these methods. It is found that shunt-quenching by a deliberate current mismatch can only play a minor role in the overall optimization of the current match point. Engineering the resistive properties of the intermediate layers must be generally considered ineffective. It only works for the rather specific case of strong and macroscopically distributed shunts with little cell-to-cell variation and only if some further requirements of the cell design are met.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"8 23","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202400571","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400571","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
One challenge in thin-film based solar cells, including perovskite-silicon tandem cells, is the defect-free deposition of the thin-film layers. Such defects can result in high local parasitic current losses, that is, local shunt spots. Depending on the nature of the defects, their geometrical distribution can either be microscopic, for example, induced by texture morphology, or macroscopic, for example, induced by particles during processing. Instead of avoiding the defects themselves, so-called shunt-quenching methods have been proposed to mitigate the associated efficiency loss. This work investigates the following recently suggested methods: 1) a deliberate current mismatch; and 2) engineering the resistive properties of the intermediate layers between the subcells to electrically isolate the shunt. A comprehensive 3D device simulation study is presented to quantitatively analyze the (in)effectiveness of these methods. It is found that shunt-quenching by a deliberate current mismatch can only play a minor role in the overall optimization of the current match point. Engineering the resistive properties of the intermediate layers must be generally considered ineffective. It only works for the rather specific case of strong and macroscopically distributed shunts with little cell-to-cell variation and only if some further requirements of the cell design are met.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.