Comparative effects of intermittent and continuous simulated rainstorms on rill erosion based on photogrammetry

IF 2.8 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL
Yanmin Jiang, Haijing Shi, Zhongming Wen, Xihua Yang, Minghang Guo, Junfeng Shui, You Fu Wu, David Paull
{"title":"Comparative effects of intermittent and continuous simulated rainstorms on rill erosion based on photogrammetry","authors":"Yanmin Jiang,&nbsp;Haijing Shi,&nbsp;Zhongming Wen,&nbsp;Xihua Yang,&nbsp;Minghang Guo,&nbsp;Junfeng Shui,&nbsp;You Fu Wu,&nbsp;David Paull","doi":"10.1002/esp.6029","DOIUrl":null,"url":null,"abstract":"<p>Despite artificial rainfall simulation proves invaluable for the study of soil erosion processes and model construction, it still fails to fully replicate the characteristics of natural rainfall. Currently, most artificial rainfall experiments have carried out a large number of continuous high-intensity rainfall due to the focus on the characteristics of short duration and high intensity of natural rainstorm but have ignored the erosion effects caused by intermittent rainstorm with low intensity and long duration. In this study, two sets of artificial rainfall simulation experiments of intermittent low-intensity rainstorm (RR1) and continuous high-intensity rainstorm (RR2) were conducted to evaluate the effects of rainfall characteristics on erosion morphology, runoff generation and soil loss. The evolution morphology monitored by a digital close-range photogrammetry technology demonstrated the difference between the two rainstorm regimes. The soil surface was damaged more seriously under rainfall of RR2, and the rill morphological indicators of RR1 were all less than that of RR2. As rainfall proceeded, morphological indicators except for rill width-depth ratio gradually increased. As a result, the runoff rate and sediment yield between two regimes were distinct. The segmented and total soil loss, average runoff rate and sediment concentration of RR1 were all less than that of RR2, with the total soil loss of the two rainstorm regimes being 275 and 683 kg, respectively. Water infiltration, rainfall intensity, duration and frequency may be the main factors leading to the difference in soil loss and erosion morphology between two rainstorm regimes. The inconsistency of these factors can easily cause the deviation of understanding of soil erosion mechanism. Therefore, the comparison of erosion effects under different rainstorm regimes has important implications for the improvement of natural rainstorm simulation and the comprehensive understanding of erosion mechanism.</p>","PeriodicalId":11408,"journal":{"name":"Earth Surface Processes and Landforms","volume":"49 15","pages":"5227-5243"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Surface Processes and Landforms","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/esp.6029","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Despite artificial rainfall simulation proves invaluable for the study of soil erosion processes and model construction, it still fails to fully replicate the characteristics of natural rainfall. Currently, most artificial rainfall experiments have carried out a large number of continuous high-intensity rainfall due to the focus on the characteristics of short duration and high intensity of natural rainstorm but have ignored the erosion effects caused by intermittent rainstorm with low intensity and long duration. In this study, two sets of artificial rainfall simulation experiments of intermittent low-intensity rainstorm (RR1) and continuous high-intensity rainstorm (RR2) were conducted to evaluate the effects of rainfall characteristics on erosion morphology, runoff generation and soil loss. The evolution morphology monitored by a digital close-range photogrammetry technology demonstrated the difference between the two rainstorm regimes. The soil surface was damaged more seriously under rainfall of RR2, and the rill morphological indicators of RR1 were all less than that of RR2. As rainfall proceeded, morphological indicators except for rill width-depth ratio gradually increased. As a result, the runoff rate and sediment yield between two regimes were distinct. The segmented and total soil loss, average runoff rate and sediment concentration of RR1 were all less than that of RR2, with the total soil loss of the two rainstorm regimes being 275 and 683 kg, respectively. Water infiltration, rainfall intensity, duration and frequency may be the main factors leading to the difference in soil loss and erosion morphology between two rainstorm regimes. The inconsistency of these factors can easily cause the deviation of understanding of soil erosion mechanism. Therefore, the comparison of erosion effects under different rainstorm regimes has important implications for the improvement of natural rainstorm simulation and the comprehensive understanding of erosion mechanism.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Earth Surface Processes and Landforms
Earth Surface Processes and Landforms 地学-地球科学综合
CiteScore
6.40
自引率
12.10%
发文量
215
审稿时长
4 months
期刊介绍: Earth Surface Processes and Landforms is an interdisciplinary international journal concerned with: the interactions between surface processes and landforms and landscapes; that lead to physical, chemical and biological changes; and which in turn create; current landscapes and the geological record of past landscapes. Its focus is core to both physical geographical and geological communities, and also the wider geosciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信