Effective Steady-State Recombination Decay Times in Comparison to Time-Resolved Photoluminescence Decay Times in Halide Perovskite Solar Cells

IF 6 3区 工程技术 Q2 ENERGY & FUELS
Solar RRL Pub Date : 2024-11-11 DOI:10.1002/solr.202400504
Chris Dreessen, Lidón Gil-Escrig, Markus Hülsbeck, Michele Sessolo, Henk J. Bolink, Thomas Kirchartz
{"title":"Effective Steady-State Recombination Decay Times in Comparison to Time-Resolved Photoluminescence Decay Times in Halide Perovskite Solar Cells","authors":"Chris Dreessen,&nbsp;Lidón Gil-Escrig,&nbsp;Markus Hülsbeck,&nbsp;Michele Sessolo,&nbsp;Henk J. Bolink,&nbsp;Thomas Kirchartz","doi":"10.1002/solr.202400504","DOIUrl":null,"url":null,"abstract":"<p>One of the key topics in perovskite solar cells is the reduction of charge carrier recombination, with the aim of increasing power conversion efficiency. The recombination lifetime is a commonly used tool, as it directly affects the current–voltage curve via the diffusion length. The lifetime is often estimated using time-domain measurement methods such as time-resolved photoluminescence. However, two obstacles emerge when applying the transiently measured decay times to the steady-state theory. In general, the decay time depends on the charge carrier concentration, and it is often not clear under which conditions the transient measurement must be conducted to be comparable with the steady-state performance of the device. Furthermore, diffusion and capacitive effects due to charge injection and extraction can influence transient techniques and cause the measured decay time to deviate from the sought-after recombination lifetime. Voltage-dependent steady-state photoluminescence measurements can be used to estimate the internal voltage during device operation and allow the extraction of collection efficiencies and effective steady-state decay times that are independent of transport and capacitive effects. Here, the differences between the steady-state and transient decay times are identified and discussed, and the losses in the current–voltage curve caused by extraction issues are quantified.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"8 23","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202400504","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400504","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

One of the key topics in perovskite solar cells is the reduction of charge carrier recombination, with the aim of increasing power conversion efficiency. The recombination lifetime is a commonly used tool, as it directly affects the current–voltage curve via the diffusion length. The lifetime is often estimated using time-domain measurement methods such as time-resolved photoluminescence. However, two obstacles emerge when applying the transiently measured decay times to the steady-state theory. In general, the decay time depends on the charge carrier concentration, and it is often not clear under which conditions the transient measurement must be conducted to be comparable with the steady-state performance of the device. Furthermore, diffusion and capacitive effects due to charge injection and extraction can influence transient techniques and cause the measured decay time to deviate from the sought-after recombination lifetime. Voltage-dependent steady-state photoluminescence measurements can be used to estimate the internal voltage during device operation and allow the extraction of collection efficiencies and effective steady-state decay times that are independent of transport and capacitive effects. Here, the differences between the steady-state and transient decay times are identified and discussed, and the losses in the current–voltage curve caused by extraction issues are quantified.

Abstract Image

卤化物钙钛矿太阳能电池中有效稳态复合衰减时间与时间分辨光致发光衰减时间的比较
钙钛矿太阳能电池的一个关键课题是减少载流子复合,以提高功率转换效率。复合寿命是一种常用的工具,因为它通过扩散长度直接影响电流-电压曲线。寿命通常使用时域测量方法来估计,例如时间分辨光致发光。然而,当将瞬态测量的衰减时间应用于稳态理论时,出现了两个障碍。一般来说,衰减时间取决于载流子浓度,通常不清楚在哪些条件下必须进行瞬态测量才能与器件的稳态性能相比较。此外,由于电荷注入和萃取引起的扩散和电容效应会影响瞬态技术,并导致测量到的衰减时间偏离理想的复合寿命。电压依赖的稳态光致发光测量可用于估计器件运行期间的内部电压,并允许提取独立于传输和电容效应的收集效率和有效稳态衰减时间。在这里,确定和讨论了稳态和瞬态衰减时间之间的差异,并量化了由提取问题引起的电流-电压曲线中的损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar RRL
Solar RRL Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍: Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信