A fault detection and location algorithm for the LVDC interconnection network in rural area

IF 2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Chengwei Liu, Joan Marc Rodriguez-Bernuz, Di Liu, Saizhao Yang, Yitong Li, Qiteng Hong, Adrià Junyent-Ferré
{"title":"A fault detection and location algorithm for the LVDC interconnection network in rural area","authors":"Chengwei Liu,&nbsp;Joan Marc Rodriguez-Bernuz,&nbsp;Di Liu,&nbsp;Saizhao Yang,&nbsp;Yitong Li,&nbsp;Qiteng Hong,&nbsp;Adrià Junyent-Ferré","doi":"10.1049/gtd2.13293","DOIUrl":null,"url":null,"abstract":"<p>Low voltage DC (LVDC) microgrids (MGs) can be linked together through an interconnection network to enhance the utilization of their energy resources in remote locations, particularly in rural low-income areas. However, the identification of the fault is challenging due to the fast fault transients and equipment limitations, where there are no sensors and DC circuit breakers (DCCBs) in the lines. To solve this problem, this article proposes a fault detection and location algorithm without requiring extra sensors and DCCBs in lines. The proposed algorithm uses the sensors of the interface converters to detect the fault. Following this, a coordinated current injection method is used to identify the faulty element by coordinating converters with disconnectors. This process employs two strategies “weight check” and “scope check” to minimize the time and the number of actions. The algorithm is robust to various fault impedance, fault types and network topology modifications. The effectiveness of the algorithm is validated through a series of simulation case studies.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"18 24","pages":"4291-4301"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13293","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13293","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Low voltage DC (LVDC) microgrids (MGs) can be linked together through an interconnection network to enhance the utilization of their energy resources in remote locations, particularly in rural low-income areas. However, the identification of the fault is challenging due to the fast fault transients and equipment limitations, where there are no sensors and DC circuit breakers (DCCBs) in the lines. To solve this problem, this article proposes a fault detection and location algorithm without requiring extra sensors and DCCBs in lines. The proposed algorithm uses the sensors of the interface converters to detect the fault. Following this, a coordinated current injection method is used to identify the faulty element by coordinating converters with disconnectors. This process employs two strategies “weight check” and “scope check” to minimize the time and the number of actions. The algorithm is robust to various fault impedance, fault types and network topology modifications. The effectiveness of the algorithm is validated through a series of simulation case studies.

Abstract Image

农村LVDC互联网络故障检测与定位算法
低压直流微电网(LVDC)可以通过互联网络连接在一起,以提高偏远地区,特别是农村低收入地区对其能源的利用。然而,由于快速故障瞬变和设备限制,在线路中没有传感器和直流断路器(dccb)的情况下,故障识别具有挑战性。为了解决这一问题,本文提出了一种不需要额外的传感器和线路dccb的故障检测和定位算法。该算法利用接口转换器的传感器进行故障检测。在此基础上,采用协调注入电流的方法,通过协调变流器和隔离器来识别故障元件。这个过程采用了“重量检查”和“范围检查”两种策略来减少时间和行动的数量。该算法对各种故障阻抗、故障类型和网络拓扑变化都具有鲁棒性。通过一系列的仿真案例研究,验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Iet Generation Transmission & Distribution
Iet Generation Transmission & Distribution 工程技术-工程:电子与电气
CiteScore
6.10
自引率
12.00%
发文量
301
审稿时长
5.4 months
期刊介绍: IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix. The scope of IET Generation, Transmission & Distribution includes the following: Design of transmission and distribution systems Operation and control of power generation Power system management, planning and economics Power system operation, protection and control Power system measurement and modelling Computer applications and computational intelligence in power flexible AC or DC transmission systems Special Issues. Current Call for papers: Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信