Holistic Management of Wastewater Pollution Through Biological Treatment: A Sustainable Future

IF 1.5 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Bidisha Chatterjee, Stootee Baruah, Deepsikha Chatterjee, Sharadia Dey, Arup Kumar Mitra
{"title":"Holistic Management of Wastewater Pollution Through Biological Treatment: A Sustainable Future","authors":"Bidisha Chatterjee,&nbsp;Stootee Baruah,&nbsp;Deepsikha Chatterjee,&nbsp;Sharadia Dey,&nbsp;Arup Kumar Mitra","doi":"10.1002/clen.202400059","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The global population is increasing at an elevated speed leading to the expansion of urbanization at the cost of environmental degradation, especially aquatic ecosystem pollution due to the enhanced discharge of wastewater. These aquatic ecosystems are primarily polluted by potentially toxic elements, polyaromatic hydrocarbons, dyes, plastics, pesticides, organic compounds, and molecules present in fertilizers, household wastes, industrial effluents, and sewage discharge. The enhanced deterioration of water bodies has led to the search for natural solutions for a sustainable ecosystem. The utilization of the natural microbial flora of the aquatic ecosystem for remediation, more popularly known as bioremediation, is of global interest because of its cost-effectiveness and eco-friendly approach. Bioremediation can be broadly categorized into bacterial remediation, mycoremediation, and phytoremediation and is more commonly studied for soil pollution. However, in this review, we discuss bioremediation techniques and mechanisms with respect to water pollution. Aquatic microbes utilize the toxic components present in wastewater as a substrate for their own metabolism by acting as a biologically active methylator or by chemical alteration of the toxicants into less harmful products, thus degrading the toxic environmental pollutants into nontoxic products thereby eliminating their detrimental effects. Microalgae used in phytoremediation also help to elevate the dissolved oxygen level in the aquatic ecosystem thereby reducing the probability of eutrophication. This review represents the study of diverse pollutants remediation and a method involving microbial consortia in a bioreactor for optimum efficacy at minimum cost.</p>\n </div>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 12","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clean-soil Air Water","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/clen.202400059","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The global population is increasing at an elevated speed leading to the expansion of urbanization at the cost of environmental degradation, especially aquatic ecosystem pollution due to the enhanced discharge of wastewater. These aquatic ecosystems are primarily polluted by potentially toxic elements, polyaromatic hydrocarbons, dyes, plastics, pesticides, organic compounds, and molecules present in fertilizers, household wastes, industrial effluents, and sewage discharge. The enhanced deterioration of water bodies has led to the search for natural solutions for a sustainable ecosystem. The utilization of the natural microbial flora of the aquatic ecosystem for remediation, more popularly known as bioremediation, is of global interest because of its cost-effectiveness and eco-friendly approach. Bioremediation can be broadly categorized into bacterial remediation, mycoremediation, and phytoremediation and is more commonly studied for soil pollution. However, in this review, we discuss bioremediation techniques and mechanisms with respect to water pollution. Aquatic microbes utilize the toxic components present in wastewater as a substrate for their own metabolism by acting as a biologically active methylator or by chemical alteration of the toxicants into less harmful products, thus degrading the toxic environmental pollutants into nontoxic products thereby eliminating their detrimental effects. Microalgae used in phytoremediation also help to elevate the dissolved oxygen level in the aquatic ecosystem thereby reducing the probability of eutrophication. This review represents the study of diverse pollutants remediation and a method involving microbial consortia in a bioreactor for optimum efficacy at minimum cost.

通过生物处理全面管理废水污染:可持续的未来
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Clean-soil Air Water
Clean-soil Air Water 环境科学-海洋与淡水生物学
CiteScore
2.80
自引率
5.90%
发文量
88
审稿时长
3.6 months
期刊介绍: CLEAN covers all aspects of Sustainability and Environmental Safety. The journal focuses on organ/human--environment interactions giving interdisciplinary insights on a broad range of topics including air pollution, waste management, the water cycle, and environmental conservation. With a 2019 Journal Impact Factor of 1.603 (Journal Citation Reports (Clarivate Analytics, 2020), the journal publishes an attractive mixture of peer-reviewed scientific reviews, research papers, and short communications. Papers dealing with environmental sustainability issues from such fields as agriculture, biological sciences, energy, food sciences, geography, geology, meteorology, nutrition, soil and water sciences, etc., are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信