{"title":"Absolute Train Localization Based on the Identification of Surrounding Structures Using 1D LiDAR Sensor","authors":"Kensuke Nagai, Wataru Ohnishi, Takafumi Koseki","doi":"10.1002/ecj.12464","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Train localization is an essential technology for effective train control. Currently, train localization primarily relies on using track circuits and balises, which are placed along the track to provide precise location information. However, balises have to be placed at intervals of a few kilometers. This increases maintenance costs and makes them vulnerable to being damaged by ice blocks falling from moving trains. Therefore, in this study, we propose a method for absolute train localization based on structure detection and identification using a 1D light detection and ranging (LiDAR) sensor to reduce the number of balises. Structure identification is achieved using scan matching. In the experiments using a car, the proposed method achieved an identification success rate of over 90%. We also considered the effect of raindrops by filtering the measurement data. By testing and analyzing the identification results, we successfully reduced all cases of misidentification.</p>\n </div>","PeriodicalId":50539,"journal":{"name":"Electronics and Communications in Japan","volume":"107 4","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics and Communications in Japan","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecj.12464","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Train localization is an essential technology for effective train control. Currently, train localization primarily relies on using track circuits and balises, which are placed along the track to provide precise location information. However, balises have to be placed at intervals of a few kilometers. This increases maintenance costs and makes them vulnerable to being damaged by ice blocks falling from moving trains. Therefore, in this study, we propose a method for absolute train localization based on structure detection and identification using a 1D light detection and ranging (LiDAR) sensor to reduce the number of balises. Structure identification is achieved using scan matching. In the experiments using a car, the proposed method achieved an identification success rate of over 90%. We also considered the effect of raindrops by filtering the measurement data. By testing and analyzing the identification results, we successfully reduced all cases of misidentification.
期刊介绍:
Electronics and Communications in Japan (ECJ) publishes papers translated from the Transactions of the Institute of Electrical Engineers of Japan 12 times per year as an official journal of the Institute of Electrical Engineers of Japan (IEEJ). ECJ aims to provide world-class researches in highly diverse and sophisticated areas of Electrical and Electronic Engineering as well as in related disciplines with emphasis on electronic circuits, controls and communications. ECJ focuses on the following fields:
- Electronic theory and circuits,
- Control theory,
- Communications,
- Cryptography,
- Biomedical fields,
- Surveillance,
- Robotics,
- Sensors and actuators,
- Micromachines,
- Image analysis and signal analysis,
- New materials.
For works related to the science, technology, and applications of electric power, please refer to the sister journal Electrical Engineering in Japan (EEJ).