Mott Transitions: A Brief Review

IF 4.4 Q1 OPTICS
Mukul S. Laad, Luis Craco
{"title":"Mott Transitions: A Brief Review","authors":"Mukul S. Laad,&nbsp;Luis Craco","doi":"10.1002/qute.202200186","DOIUrl":null,"url":null,"abstract":"<p>This short review provides an overview of some aspects of the current understanding of Mott insulators and Mott metal-insulator transitions. The development of this field is traced, from earliest classical views to the state-of-the-art picture based on methods of quantum field theory. A quasi-local view point, characterizing “pure” Mott physics, throughout this article is focused on. Following an extensive discussion on Mott transitions in one- and multi-orbital Hubbard models, progress is reviewed in first-principles correlation-based approaches in achieving a quantitative description of insulator-metal transitions in two celebrated Mott materials. Building thereupon, success of such approaches in providing microscopic justification for the famed Mott criterion, as well as in the attempts to model emerging devices is reviewed briefly. The study is concluded with a discussion of a class of Mott insulators modeled by the Kugel-Khomskii model, and discuss how progress in the understanding of novel quantum liquid-crystal-like order provides an attractive opportunity to gain insight into topologically ordered states and topological-to-trivial phase transitions for certain quantum spin models in terms of a dual description in terms of Landau-like symmetry breaking.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"7 12","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202200186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This short review provides an overview of some aspects of the current understanding of Mott insulators and Mott metal-insulator transitions. The development of this field is traced, from earliest classical views to the state-of-the-art picture based on methods of quantum field theory. A quasi-local view point, characterizing “pure” Mott physics, throughout this article is focused on. Following an extensive discussion on Mott transitions in one- and multi-orbital Hubbard models, progress is reviewed in first-principles correlation-based approaches in achieving a quantitative description of insulator-metal transitions in two celebrated Mott materials. Building thereupon, success of such approaches in providing microscopic justification for the famed Mott criterion, as well as in the attempts to model emerging devices is reviewed briefly. The study is concluded with a discussion of a class of Mott insulators modeled by the Kugel-Khomskii model, and discuss how progress in the understanding of novel quantum liquid-crystal-like order provides an attractive opportunity to gain insight into topologically ordered states and topological-to-trivial phase transitions for certain quantum spin models in terms of a dual description in terms of Landau-like symmetry breaking.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信