Monitoring of thermal conditions and snow dynamics at periglacial block accumulations in a low mountain range in central Germany

IF 2.8 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL
Tim Wiegand, Christof Kneisel
{"title":"Monitoring of thermal conditions and snow dynamics at periglacial block accumulations in a low mountain range in central Germany","authors":"Tim Wiegand,&nbsp;Christof Kneisel","doi":"10.1002/esp.5998","DOIUrl":null,"url":null,"abstract":"<p>The Rhoen Mountains, a relict periglacial landscape in central Germany, feature a wide range of openwork block accumulations. Although located in a temperate climate, those have characteristics comparable with cold regions of higher altitude or latitude such as arctic-alpine species, longer lasting snow patches or the discussed existence of summer or even year-round ice lenses in one of the largest of these landforms in the Central German Uplands. This study aims for a characterization of the microclimatic conditions of two neighbouring block accumulations. Therefore, temperatures were registered by data loggers along profiles, and snow dynamics were monitored using time-lapse cameras and terrestrial laser scans. These observations are finally compared with geophysical measurements to address the question of potential isolated low-altitude permafrost occurrences. Mean ground surface temperatures show an inverse thermal gradient along the Schafstein block accumulation. Furrows were identified as the cold spots in winter, whereas snow melt holes are signs of a chimney effect. In summer, cold air flows out at ventilation holes along the front causing temperatures of up to 25°C below air temperatures, although no clear signs of permafrost were detected. Temperature correlations reveal periods indicative of a recurring internal summer air circulation. Coarse blocky substrate also favours ground cooling of the smaller Mathesberg block accumulation compared with its surroundings. Winter temperatures are influenced by a persistent snowbank forming due to drifting and blowing snow at the leeward edge of a plateau as little amounts of snow are sufficient to be redistributed by westerlies. The prolonged melt of the snowbank might have had or still has a local hydrological and geomorphological impact. Uncertainties remain regarding the behaviour of the microclimate of block accumulations in a warming climate. Being ‘cold spots’ of high ecological value further investigations are suggested.</p>","PeriodicalId":11408,"journal":{"name":"Earth Surface Processes and Landforms","volume":"49 15","pages":"5321-5338"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/esp.5998","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Surface Processes and Landforms","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/esp.5998","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Rhoen Mountains, a relict periglacial landscape in central Germany, feature a wide range of openwork block accumulations. Although located in a temperate climate, those have characteristics comparable with cold regions of higher altitude or latitude such as arctic-alpine species, longer lasting snow patches or the discussed existence of summer or even year-round ice lenses in one of the largest of these landforms in the Central German Uplands. This study aims for a characterization of the microclimatic conditions of two neighbouring block accumulations. Therefore, temperatures were registered by data loggers along profiles, and snow dynamics were monitored using time-lapse cameras and terrestrial laser scans. These observations are finally compared with geophysical measurements to address the question of potential isolated low-altitude permafrost occurrences. Mean ground surface temperatures show an inverse thermal gradient along the Schafstein block accumulation. Furrows were identified as the cold spots in winter, whereas snow melt holes are signs of a chimney effect. In summer, cold air flows out at ventilation holes along the front causing temperatures of up to 25°C below air temperatures, although no clear signs of permafrost were detected. Temperature correlations reveal periods indicative of a recurring internal summer air circulation. Coarse blocky substrate also favours ground cooling of the smaller Mathesberg block accumulation compared with its surroundings. Winter temperatures are influenced by a persistent snowbank forming due to drifting and blowing snow at the leeward edge of a plateau as little amounts of snow are sufficient to be redistributed by westerlies. The prolonged melt of the snowbank might have had or still has a local hydrological and geomorphological impact. Uncertainties remain regarding the behaviour of the microclimate of block accumulations in a warming climate. Being ‘cold spots’ of high ecological value further investigations are suggested.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Earth Surface Processes and Landforms
Earth Surface Processes and Landforms 地学-地球科学综合
CiteScore
6.40
自引率
12.10%
发文量
215
审稿时长
4 months
期刊介绍: Earth Surface Processes and Landforms is an interdisciplinary international journal concerned with: the interactions between surface processes and landforms and landscapes; that lead to physical, chemical and biological changes; and which in turn create; current landscapes and the geological record of past landscapes. Its focus is core to both physical geographical and geological communities, and also the wider geosciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信