Insights into Martian bedform migration: Results from Gale, Jezero and Pasteur craters

IF 2.8 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL
Anurag Sahu, Anirban Mandal, Satyaki Banerjee, Jagabandhu Panda
{"title":"Insights into Martian bedform migration: Results from Gale, Jezero and Pasteur craters","authors":"Anurag Sahu,&nbsp;Anirban Mandal,&nbsp;Satyaki Banerjee,&nbsp;Jagabandhu Panda","doi":"10.1002/esp.6013","DOIUrl":null,"url":null,"abstract":"<p>An attempt is made in this study to advance the understanding of the sand movement on Mars by studying the bedform migration at Gale, Jezero and Pasteur craters. The study on the grain size distribution at Gale Crater using Curiosity rover (MAHLI and APXS) observations reveals that the grains with smaller diameters (~50–150 μ) are more prone to migration and vice-versa, which gives an idea of the necessary requirements that initiate bedform migration. The chemical analysis of the surface materials at the Gale crater revealed elevated concentrations of P<sub>2</sub>O<sub>5</sub>, SO<sub>3</sub>, Cl and Zn in soil compared to sand and active transportation processes for sand but not soil. The comprehensive chemical makeup of the Martian soil (inactive bedforms) and sand (active bedforms) is characterized by its basaltic nature, with enriched volatile elements such as sulphur, chlorine and zinc, and the presence of minerals like plagioclase, pyroxene and olivine due to the cohesive nature of inactive bedforms. Physical weathering and wind flow velocity play a pivotal role in the formation of different sedimentary bodies, impacting grain size distribution and mineralogy. The effect of dust-lifting on surface features is studied by analysing Perseverance-MEDA observations at the Jezero crater to understand the short-term changes in the bedform. These events are found to involve the redistribution of only a small amount of materials and, thereby, changing surface features on Mars over a short period. To detect the bedform migration in the Pasteur crater, several HiRISE images acquired over different time intervals were used. The changes in the ripple crest (~0.29–1.18 m/Earth year) and dune slip face suggest new grain flow events. In the Pasteur crater, extensive changes in sand deposits near the dunes signify a widespread bedform migration. The stronger north-westerly and north-easterly winds dominate these changes. Thus, the bedform migration in the three tropical craters exhibits significant variability driven by localized aeolian processes. This variability is crucial for understanding Mars' geological history, current surface dynamics and eventually, helps in planning future missions.</p>","PeriodicalId":11408,"journal":{"name":"Earth Surface Processes and Landforms","volume":"49 15","pages":"5069-5085"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Surface Processes and Landforms","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/esp.6013","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

An attempt is made in this study to advance the understanding of the sand movement on Mars by studying the bedform migration at Gale, Jezero and Pasteur craters. The study on the grain size distribution at Gale Crater using Curiosity rover (MAHLI and APXS) observations reveals that the grains with smaller diameters (~50–150 μ) are more prone to migration and vice-versa, which gives an idea of the necessary requirements that initiate bedform migration. The chemical analysis of the surface materials at the Gale crater revealed elevated concentrations of P2O5, SO3, Cl and Zn in soil compared to sand and active transportation processes for sand but not soil. The comprehensive chemical makeup of the Martian soil (inactive bedforms) and sand (active bedforms) is characterized by its basaltic nature, with enriched volatile elements such as sulphur, chlorine and zinc, and the presence of minerals like plagioclase, pyroxene and olivine due to the cohesive nature of inactive bedforms. Physical weathering and wind flow velocity play a pivotal role in the formation of different sedimentary bodies, impacting grain size distribution and mineralogy. The effect of dust-lifting on surface features is studied by analysing Perseverance-MEDA observations at the Jezero crater to understand the short-term changes in the bedform. These events are found to involve the redistribution of only a small amount of materials and, thereby, changing surface features on Mars over a short period. To detect the bedform migration in the Pasteur crater, several HiRISE images acquired over different time intervals were used. The changes in the ripple crest (~0.29–1.18 m/Earth year) and dune slip face suggest new grain flow events. In the Pasteur crater, extensive changes in sand deposits near the dunes signify a widespread bedform migration. The stronger north-westerly and north-easterly winds dominate these changes. Thus, the bedform migration in the three tropical craters exhibits significant variability driven by localized aeolian processes. This variability is crucial for understanding Mars' geological history, current surface dynamics and eventually, helps in planning future missions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Earth Surface Processes and Landforms
Earth Surface Processes and Landforms 地学-地球科学综合
CiteScore
6.40
自引率
12.10%
发文量
215
审稿时长
4 months
期刊介绍: Earth Surface Processes and Landforms is an interdisciplinary international journal concerned with: the interactions between surface processes and landforms and landscapes; that lead to physical, chemical and biological changes; and which in turn create; current landscapes and the geological record of past landscapes. Its focus is core to both physical geographical and geological communities, and also the wider geosciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信