{"title":"Feature Transfer Learning for Fatigue Life Prediction of Additive Manufactured Metals With Small Samples","authors":"Hao Wu, Zhi-Ming Fan, Lei Gan","doi":"10.1111/ffe.14497","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A feature transfer learning (FTL)-based model is proposed to address small-sample problems in fatigue life prediction of additively manufactured (AM) metals. Transfer component analysis (TCA) is studied for data alignment before model training. Correspondingly, two TCA improvement strategies are further considered to aggregate training data from distinct AM processing conditions. An experimental database consisting of 103 fatigue data is built for model evaluation. The results demonstrate that the proposed model outperforms conventional machine learning models and other transfer learning-based models in terms of accuracy and data demand, showing good applicability for AM fatigue life assessment.</p>\n </div>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 1","pages":"467-486"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14497","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A feature transfer learning (FTL)-based model is proposed to address small-sample problems in fatigue life prediction of additively manufactured (AM) metals. Transfer component analysis (TCA) is studied for data alignment before model training. Correspondingly, two TCA improvement strategies are further considered to aggregate training data from distinct AM processing conditions. An experimental database consisting of 103 fatigue data is built for model evaluation. The results demonstrate that the proposed model outperforms conventional machine learning models and other transfer learning-based models in terms of accuracy and data demand, showing good applicability for AM fatigue life assessment.
期刊介绍:
Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.