Delamination detection in concrete decks using numerical simulation and UAV-based infrared thermography with deep learning

IF 9.6 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Dyala Aljagoub, Ri Na, Chongsheng Cheng
{"title":"Delamination detection in concrete decks using numerical simulation and UAV-based infrared thermography with deep learning","authors":"Dyala Aljagoub, Ri Na, Chongsheng Cheng","doi":"10.1016/j.autcon.2024.105940","DOIUrl":null,"url":null,"abstract":"The potential of concrete bridge delamination detection using infrared thermography (IRT) has grown with technological advancements. However, most current studies require an external input (subjective threshold), reducing the detection's objectivity and accuracy. Deep learning enables automation and streamlines data processing, potentially enhancing accuracy. Yet, data scarcity poses a challenge to deep learning applications, hindering their performance. This paper aims to develop a deep learning approach using supervised learning object detection models with extended data from real and simulated images. The numerical simulation image supplementation seeks to eliminate the limited data barrier by creating a comprehensive dataset, potentially improving model performance and robustness. Mask R-CNN and YOLOv5 were tested across various training data and model parameter combinations to develop an optimal detection model. Lastly, when tested, the model showed a remarkable ability to detect delamination of varying properties accurately compared to currently employed IRT techniques.","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"31 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.autcon.2024.105940","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The potential of concrete bridge delamination detection using infrared thermography (IRT) has grown with technological advancements. However, most current studies require an external input (subjective threshold), reducing the detection's objectivity and accuracy. Deep learning enables automation and streamlines data processing, potentially enhancing accuracy. Yet, data scarcity poses a challenge to deep learning applications, hindering their performance. This paper aims to develop a deep learning approach using supervised learning object detection models with extended data from real and simulated images. The numerical simulation image supplementation seeks to eliminate the limited data barrier by creating a comprehensive dataset, potentially improving model performance and robustness. Mask R-CNN and YOLOv5 were tested across various training data and model parameter combinations to develop an optimal detection model. Lastly, when tested, the model showed a remarkable ability to detect delamination of varying properties accurately compared to currently employed IRT techniques.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信