Knowledge graph representation learning: A comprehensive and experimental overview

IF 13.3 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Dorsaf Sellami, Wissem Inoubli, Imed Riadh Farah, Sabeur Aridhi
{"title":"Knowledge graph representation learning: A comprehensive and experimental overview","authors":"Dorsaf Sellami, Wissem Inoubli, Imed Riadh Farah, Sabeur Aridhi","doi":"10.1016/j.cosrev.2024.100716","DOIUrl":null,"url":null,"abstract":"Knowledge graph embedding (KGE) is a hot topic in the field of Knowledge graphs (KG). It aims to transform KG entities and relations into vector representations, facilitating their manipulation in various application tasks and real-world scenarios. So far, numerous models have been developed in KGE to perform KG embedding. However, several challenges must be addressed when designing effective KGE models. The most discussed challenges in the literature include scalability (KGs contain millions of entities and relations), incompleteness (missing links), the complexity of relations (symmetries, inversion, composition, etc.), and the sparsity of some entities and relations. The purpose of this paper is to provide a comprehensive overview of KGE models. We begin with a theoretical analysis and comparison of the existing methods proposed so far for generating KGE, which we have classified into four categories. We then conducted experiments using four benchmark datasets to compare the efficacy, efficiency, inductiveness, the electricity and the CO<mml:math altimg=\"si1.svg\" display=\"inline\"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math> emission of five state-of-the-art methods in the link prediction task, providing a comprehensive analysis of the most commonly used benchmarks in the literature.","PeriodicalId":48633,"journal":{"name":"Computer Science Review","volume":"81 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science Review","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.cosrev.2024.100716","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Knowledge graph embedding (KGE) is a hot topic in the field of Knowledge graphs (KG). It aims to transform KG entities and relations into vector representations, facilitating their manipulation in various application tasks and real-world scenarios. So far, numerous models have been developed in KGE to perform KG embedding. However, several challenges must be addressed when designing effective KGE models. The most discussed challenges in the literature include scalability (KGs contain millions of entities and relations), incompleteness (missing links), the complexity of relations (symmetries, inversion, composition, etc.), and the sparsity of some entities and relations. The purpose of this paper is to provide a comprehensive overview of KGE models. We begin with a theoretical analysis and comparison of the existing methods proposed so far for generating KGE, which we have classified into four categories. We then conducted experiments using four benchmark datasets to compare the efficacy, efficiency, inductiveness, the electricity and the CO2 emission of five state-of-the-art methods in the link prediction task, providing a comprehensive analysis of the most commonly used benchmarks in the literature.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Science Review
Computer Science Review Computer Science-General Computer Science
CiteScore
32.70
自引率
0.00%
发文量
26
审稿时长
51 days
期刊介绍: Computer Science Review, a publication dedicated to research surveys and expository overviews of open problems in computer science, targets a broad audience within the field seeking comprehensive insights into the latest developments. The journal welcomes articles from various fields as long as their content impacts the advancement of computer science. In particular, articles that review the application of well-known Computer Science methods to other areas are in scope only if these articles advance the fundamental understanding of those methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信