Dehydrogenative Coupling of Alcohols with Hydrazines under Nickel Catalysis

IF 3.3 2区 化学 Q1 CHEMISTRY, ORGANIC
Reshma Babu, Abhijith Karattil Suresh, Rohit Kumar, Ekambaram Balaraman
{"title":"Dehydrogenative Coupling of Alcohols with Hydrazines under Nickel Catalysis","authors":"Reshma Babu, Abhijith Karattil Suresh, Rohit Kumar, Ekambaram Balaraman","doi":"10.1021/acs.joc.4c02279","DOIUrl":null,"url":null,"abstract":"The development of efficient and robust catalytic systems based on earth-abundant transition metals for fundamentally new transformations is crucial for sustainable chemical synthesis. Herein, an effective and selective Ni-catalyzed dehydrogenative coupling of alcohols with hydrazines with the liberation of ammonia gas is reported. Although several methods were documented for the <i>N</i>-alkylation reaction, the present strategy is conceptually novel, and the reaction proceeds through a pathway involving N–N bond cleavage of phenylhydrazine followed by hydrogen autotransfer. This unprecedented method demonstrates a wide substrate scope, allowing for the synthesis of C–N coupled products from arylhydrazines using various types of alcohols, including aryl, fused aryl, heteroaromatic, cyclic, and aliphatic alcohols, both primary and secondary alcohols. The present catalytic approach was expanded to facilitate selective deuterium incorporation reactions by employing deuterated alcohols at the α-methyl position of the resulting <i>N</i>-alkylated products. It is noteworthy that we have broadened the applicability of the current catalytic systems to facilitate the ketazine synthesis of hydrazine monohydrate by employing secondary alcohols. The reaction utilizes an inexpensive, abundant, and renewable alcohol that serves as both an alkylating and (transfer) hydrogenating agent. Kinetic studies reveal that the reaction rate depends on the concentration of arylhydrazine and the nickel catalyst, following fractional order.","PeriodicalId":57,"journal":{"name":"Journal of Organic Chemistry","volume":"148 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.joc.4c02279","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

The development of efficient and robust catalytic systems based on earth-abundant transition metals for fundamentally new transformations is crucial for sustainable chemical synthesis. Herein, an effective and selective Ni-catalyzed dehydrogenative coupling of alcohols with hydrazines with the liberation of ammonia gas is reported. Although several methods were documented for the N-alkylation reaction, the present strategy is conceptually novel, and the reaction proceeds through a pathway involving N–N bond cleavage of phenylhydrazine followed by hydrogen autotransfer. This unprecedented method demonstrates a wide substrate scope, allowing for the synthesis of C–N coupled products from arylhydrazines using various types of alcohols, including aryl, fused aryl, heteroaromatic, cyclic, and aliphatic alcohols, both primary and secondary alcohols. The present catalytic approach was expanded to facilitate selective deuterium incorporation reactions by employing deuterated alcohols at the α-methyl position of the resulting N-alkylated products. It is noteworthy that we have broadened the applicability of the current catalytic systems to facilitate the ketazine synthesis of hydrazine monohydrate by employing secondary alcohols. The reaction utilizes an inexpensive, abundant, and renewable alcohol that serves as both an alkylating and (transfer) hydrogenating agent. Kinetic studies reveal that the reaction rate depends on the concentration of arylhydrazine and the nickel catalyst, following fractional order.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Organic Chemistry
Journal of Organic Chemistry 化学-有机化学
CiteScore
6.20
自引率
11.10%
发文量
1467
审稿时长
2 months
期刊介绍: Journal of Organic Chemistry welcomes original contributions of fundamental research in all branches of the theory and practice of organic chemistry. In selecting manuscripts for publication, the editors place emphasis on the quality and novelty of the work, as well as the breadth of interest to the organic chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信