{"title":"NOX reduction mechanism: Thermal vs electrochemical step","authors":"Mohd Riyaz, Alexander Bagger","doi":"10.1016/j.electacta.2024.145429","DOIUrl":null,"url":null,"abstract":"Electrocatalysis could be a promising approach to produce valuable chemical compounds from carbon and nitrogen reactants. However, several challenges related to activity and selectivity need to be addressed to make these conversion energy and cost-efficient. The NO<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\" /><mrow is=\"true\"><mtext is=\"true\">X</mtext></mrow></msub></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.509ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -399.4 630.7 649.8\" width=\"1.465ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"></g><g is=\"true\" transform=\"translate(0,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-58\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mtext is=\"true\">X</mtext></mrow></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mtext is=\"true\">X</mtext></mrow></msub></math></script></span> reduction is an important reaction for denitrification and here we elucidate how the reaction mechanism controls the product distribution. We investigated the reduction reaction on a series of transition metals (Cu, Ni, Co, Fe, and Mn) to understand the factors governing the associative and dissociative reaction paths. While Cu favors the associative protonation path, the NO<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mrow is=\"true\" /><mrow is=\"true\"><mn is=\"true\">3</mn></mrow><mrow is=\"true\"><mo is=\"true\">&#x2212;</mo></mrow></msubsup></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.009ex\" role=\"img\" style=\"vertical-align: -0.928ex;\" viewbox=\"0 -896.2 650.5 1295.7\" width=\"1.511ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"></g><g is=\"true\" transform=\"translate(0,403)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2212\"></use></g></g><g is=\"true\" transform=\"translate(0,-307)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-33\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">3</mn></mrow><mrow is=\"true\"><mo is=\"true\">−</mo></mrow></msubsup></math></span></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">3</mn></mrow><mrow is=\"true\"><mo is=\"true\">−</mo></mrow></msubsup></math></script></span> and NO<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mrow is=\"true\" /><mrow is=\"true\"><mn is=\"true\">2</mn></mrow><mrow is=\"true\"><mo is=\"true\">&#x2212;</mo></mrow></msubsup></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.009ex\" role=\"img\" style=\"vertical-align: -0.928ex;\" viewbox=\"0 -896.2 650.5 1295.7\" width=\"1.511ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"></g><g is=\"true\" transform=\"translate(0,403)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2212\"></use></g></g><g is=\"true\" transform=\"translate(0,-308)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow><mrow is=\"true\"><mo is=\"true\">−</mo></mrow></msubsup></math></span></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow><mrow is=\"true\"><mo is=\"true\">−</mo></mrow></msubsup></math></script></span> reduction on Ni, Co, Fe, and Mn surfaces favor the dissociative reaction pathway. Comparing our DFT computed results with experimental data we found that apart from competing HER the adsorption of *NO<sub>2</sub> and its N-O dissociation barrier are two key factors for selective NO<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mrow is=\"true\" /><mrow is=\"true\"><mn is=\"true\">3</mn></mrow><mrow is=\"true\"><mo is=\"true\">&#x2212;</mo></mrow></msubsup></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.009ex\" role=\"img\" style=\"vertical-align: -0.928ex;\" viewbox=\"0 -896.2 650.5 1295.7\" width=\"1.511ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"></g><g is=\"true\" transform=\"translate(0,403)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2212\"></use></g></g><g is=\"true\" transform=\"translate(0,-307)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-33\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">3</mn></mrow><mrow is=\"true\"><mo is=\"true\">−</mo></mrow></msubsup></math></span></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">3</mn></mrow><mrow is=\"true\"><mo is=\"true\">−</mo></mrow></msubsup></math></script></span> reduction towards ammonia and NO<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mrow is=\"true\" /><mrow is=\"true\"><mn is=\"true\">2</mn></mrow><mrow is=\"true\"><mo is=\"true\">&#x2212;</mo></mrow></msubsup></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.009ex\" role=\"img\" style=\"vertical-align: -0.928ex;\" viewbox=\"0 -896.2 650.5 1295.7\" width=\"1.511ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"></g><g is=\"true\" transform=\"translate(0,403)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2212\"></use></g></g><g is=\"true\" transform=\"translate(0,-308)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow><mrow is=\"true\"><mo is=\"true\">−</mo></mrow></msubsup></math></span></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow><mrow is=\"true\"><mo is=\"true\">−</mo></mrow></msubsup></math></script></span>. These strategies could be extended to understand energetically robust reactions like N<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\" /><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.509ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -399.4 453.9 649.8\" width=\"1.054ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"></g><g is=\"true\" transform=\"translate(0,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span> and CO<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\" /><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.509ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -399.4 453.9 649.8\" width=\"1.054ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"></g><g is=\"true\" transform=\"translate(0,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span> reduction reactions.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"53 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.electacta.2024.145429","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Electrocatalysis could be a promising approach to produce valuable chemical compounds from carbon and nitrogen reactants. However, several challenges related to activity and selectivity need to be addressed to make these conversion energy and cost-efficient. The NO reduction is an important reaction for denitrification and here we elucidate how the reaction mechanism controls the product distribution. We investigated the reduction reaction on a series of transition metals (Cu, Ni, Co, Fe, and Mn) to understand the factors governing the associative and dissociative reaction paths. While Cu favors the associative protonation path, the NO and NO reduction on Ni, Co, Fe, and Mn surfaces favor the dissociative reaction pathway. Comparing our DFT computed results with experimental data we found that apart from competing HER the adsorption of *NO2 and its N-O dissociation barrier are two key factors for selective NO reduction towards ammonia and NO. These strategies could be extended to understand energetically robust reactions like N and CO reduction reactions.
期刊介绍:
Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.