Docetaxel response in BRCA1,p53-deficient mammary tumor cells is affected by Huntingtin and BAP1

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Martín González-Fernández, Carmen Perry, Nora Merete Gerhards, Paola Francica, Sven Rottenberg
{"title":"Docetaxel response in BRCA1,p53-deficient mammary tumor cells is affected by Huntingtin and BAP1","authors":"Martín González-Fernández, Carmen Perry, Nora Merete Gerhards, Paola Francica, Sven Rottenberg","doi":"10.1073/pnas.2402849121","DOIUrl":null,"url":null,"abstract":"Taxanes are frequently used anticancer drugs known to kill tumor cells by inducing mitotic aberrations and segregation defects. A defining feature of specific cancers, notably triple-negative breast cancer (TNBC) and particularly those deficient in BRCA1, is chromosomal instability (CIN). Here, we focused on understanding the mechanisms of docetaxel-induced cytotoxicity, especially in the context of BRCA1-deficient TNBC. Using functional genetic screens in CIN+ cells, we identified genes that mediate docetaxel response and found an interaction between Huntingtin (HTT) and BRCA1-associated protein-1 (BAP1). We employed <jats:italic>Brca1</jats:italic> <jats:sup>−/−</jats:sup> ; <jats:italic> p53 <jats:sup>−</jats:sup> </jats:italic> <jats:sup>/−</jats:sup> mammary tumor cells, derived from genetically engineered mouse tumors that closely mimic the human disease, to investigate the role of these genes in CIN+ BRCA1-deficient cells. Specifically, we observed that loss of HTT sensitizes CIN+ BRCA1-deficient mammary tumor cells to docetaxel by shortening mitotic spindle poles and increasing spindle multipolarity. In contrast, BAP1 depletion protected cells against these spindle aberrations by restoring spindle length and enhancing mitotic clustering of the extra centrosomes. In conclusion, our findings shed light on the roles of HTT and BAP1 in controlling mitotic spindle multipolarity and centrosome clustering, specifically in the absence of BRCA1. This affects the response to microtubule-targeting agents and suggests that further studies of the interaction of these genes with the mitotic spindle may provide useful insights into how to target CIN+ cells, particularly in the challenging therapeutic landscape of BRCA1-deficient TNBC.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"11 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2402849121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Taxanes are frequently used anticancer drugs known to kill tumor cells by inducing mitotic aberrations and segregation defects. A defining feature of specific cancers, notably triple-negative breast cancer (TNBC) and particularly those deficient in BRCA1, is chromosomal instability (CIN). Here, we focused on understanding the mechanisms of docetaxel-induced cytotoxicity, especially in the context of BRCA1-deficient TNBC. Using functional genetic screens in CIN+ cells, we identified genes that mediate docetaxel response and found an interaction between Huntingtin (HTT) and BRCA1-associated protein-1 (BAP1). We employed Brca1 −/− ; p53 /− mammary tumor cells, derived from genetically engineered mouse tumors that closely mimic the human disease, to investigate the role of these genes in CIN+ BRCA1-deficient cells. Specifically, we observed that loss of HTT sensitizes CIN+ BRCA1-deficient mammary tumor cells to docetaxel by shortening mitotic spindle poles and increasing spindle multipolarity. In contrast, BAP1 depletion protected cells against these spindle aberrations by restoring spindle length and enhancing mitotic clustering of the extra centrosomes. In conclusion, our findings shed light on the roles of HTT and BAP1 in controlling mitotic spindle multipolarity and centrosome clustering, specifically in the absence of BRCA1. This affects the response to microtubule-targeting agents and suggests that further studies of the interaction of these genes with the mitotic spindle may provide useful insights into how to target CIN+ cells, particularly in the challenging therapeutic landscape of BRCA1-deficient TNBC.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信