Epithelial tubule interconnection driven by HGF-Met signaling in the kidney

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Isabel López-García, Sunhee Oh, Christopher Chaney, Jun Tsunezumi, Iain Drummond, Leif Oxburgh, Thomas J. Carroll, Denise K. Marciano
{"title":"Epithelial tubule interconnection driven by HGF-Met signaling in the kidney","authors":"Isabel López-García, Sunhee Oh, Christopher Chaney, Jun Tsunezumi, Iain Drummond, Leif Oxburgh, Thomas J. Carroll, Denise K. Marciano","doi":"10.1073/pnas.2416887121","DOIUrl":null,"url":null,"abstract":"The formation of functional epithelial tubules is critical for the development and maintenance of many organ systems. While the mechanisms of tubule formation by epithelial cells are well studied, the process of tubule anastomosis—where tubules connect to form a continuous network—remains poorly understood. In this study, we utilized single-cell RNA sequencing to analyze embryonic mouse kidney tubules undergoing anastomosis. Our analysis identified hepatocyte growth factor (HGF) as a key potential mediator of this process. To investigate this further, we developed an assay using epithelial spheroids with fluorescently tagged apical surfaces, allowing us to visualize and quantify tubule–tubule connections. Our results demonstrate that HGF promotes tubule anastomosis, and it does so through the MAPK signaling pathway and MMPs, independently of cell proliferation. Remarkably, treatment with HGF and collagenase was sufficient to induce tubule anastomosis in embryonic mouse kidneys. These findings provide a foundational understanding of how to enhance the formation of functional tubular networks. This has significant clinical implications for the use of in vitro–grown kidney tissues in transplant medicine, potentially improving the success and integration of transplanted tissues.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"77 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2416887121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The formation of functional epithelial tubules is critical for the development and maintenance of many organ systems. While the mechanisms of tubule formation by epithelial cells are well studied, the process of tubule anastomosis—where tubules connect to form a continuous network—remains poorly understood. In this study, we utilized single-cell RNA sequencing to analyze embryonic mouse kidney tubules undergoing anastomosis. Our analysis identified hepatocyte growth factor (HGF) as a key potential mediator of this process. To investigate this further, we developed an assay using epithelial spheroids with fluorescently tagged apical surfaces, allowing us to visualize and quantify tubule–tubule connections. Our results demonstrate that HGF promotes tubule anastomosis, and it does so through the MAPK signaling pathway and MMPs, independently of cell proliferation. Remarkably, treatment with HGF and collagenase was sufficient to induce tubule anastomosis in embryonic mouse kidneys. These findings provide a foundational understanding of how to enhance the formation of functional tubular networks. This has significant clinical implications for the use of in vitro–grown kidney tissues in transplant medicine, potentially improving the success and integration of transplanted tissues.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信