Chiroptical Synaptic Perovskite Memristor as Reconfigurable Physical Unclonable Functions

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2024-12-20 DOI:10.1021/acsnano.4c11753
HoYeon Kim, Kyuho Lee, Guangtao Zan, EunAe Shin, Woojoong Kim, Kaiying Zhao, Gyumin Jang, Jooho Moon, Cheolmin Park
{"title":"Chiroptical Synaptic Perovskite Memristor as Reconfigurable Physical Unclonable Functions","authors":"HoYeon Kim, Kyuho Lee, Guangtao Zan, EunAe Shin, Woojoong Kim, Kaiying Zhao, Gyumin Jang, Jooho Moon, Cheolmin Park","doi":"10.1021/acsnano.4c11753","DOIUrl":null,"url":null,"abstract":"Physical unclonable functions (PUFs), often referred to as digital fingerprints, are emerging as critical elements in enhancing hardware security and encryption. While significant progress has been made in developing optical and memory-based PUFs, integrating reconfigurability with sensitivity to circularly polarized light (CPL) remains largely unexplored. Here, we present a chiroptical synaptic memristor (CSM) as a reconfigurable PUF, leveraging a two-dimensional organic–inorganic halide chiral perovskite. The device combines CPL sensitivity with photoresponsive electrical behavior, enabling its application in optoneuromorphic systems, as demonstrated by its ability to perform image categorization tasks within neuromorphic computing. Furthermore, by leveraging a 10 × 10 crossbar array of the CSMs, we develop a PUF capable of generating reconfigurable cryptographic keys based on the combination of neuromorphic potentiation and polarized light conditions. This work demonstrates an integrated approach to optoneuromorphic functionality, data storage, and encryption, providing an alternative approach for reconfigurable memristor-based PUFs.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"5 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c11753","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Physical unclonable functions (PUFs), often referred to as digital fingerprints, are emerging as critical elements in enhancing hardware security and encryption. While significant progress has been made in developing optical and memory-based PUFs, integrating reconfigurability with sensitivity to circularly polarized light (CPL) remains largely unexplored. Here, we present a chiroptical synaptic memristor (CSM) as a reconfigurable PUF, leveraging a two-dimensional organic–inorganic halide chiral perovskite. The device combines CPL sensitivity with photoresponsive electrical behavior, enabling its application in optoneuromorphic systems, as demonstrated by its ability to perform image categorization tasks within neuromorphic computing. Furthermore, by leveraging a 10 × 10 crossbar array of the CSMs, we develop a PUF capable of generating reconfigurable cryptographic keys based on the combination of neuromorphic potentiation and polarized light conditions. This work demonstrates an integrated approach to optoneuromorphic functionality, data storage, and encryption, providing an alternative approach for reconfigurable memristor-based PUFs.

Abstract Image

作为可重构物理不可克隆功能的热带突触钙钛矿忆阻器
物理不可克隆功能(puf),通常被称为数字指纹,正在成为增强硬件安全性和加密的关键因素。虽然基于光学和存储的puf在开发方面取得了重大进展,但将可重构性与对圆偏振光(CPL)的灵敏度集成在一起仍然是一个很大的未知领域。在这里,我们提出了一种手性突触记忆电阻器(CSM)作为可重构的PUF,利用二维有机-无机卤化物手性钙钛矿。该设备将CPL灵敏度与光响应性电行为相结合,使其能够应用于光神经形态系统,正如其在神经形态计算中执行图像分类任务的能力所证明的那样。此外,通过利用csm的10 × 10交叉棒阵列,我们开发了一个能够基于神经形态增强和偏振光条件组合生成可重构密码密钥的PUF。这项工作展示了一种集成光euromorphic功能、数据存储和加密的方法,为基于忆阻器的可重构puf提供了一种替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信