Real-Time Detection of Dynamic Restructuring in KNixFe1-xF3 Perovskite Fluorides for Enhanced Water Oxidation

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-12-20 DOI:10.1002/smll.202411017
Xiangrong Ren, Yiyue Zhai, Tao Gan, Na Yang, Bolun Wang, Shengzhong (Frank) Liu
{"title":"Real-Time Detection of Dynamic Restructuring in KNixFe1-xF3 Perovskite Fluorides for Enhanced Water Oxidation","authors":"Xiangrong Ren,&nbsp;Yiyue Zhai,&nbsp;Tao Gan,&nbsp;Na Yang,&nbsp;Bolun Wang,&nbsp;Shengzhong (Frank) Liu","doi":"10.1002/smll.202411017","DOIUrl":null,"url":null,"abstract":"<p>Mechanistic understanding of how electrode–electrolyte interfaces evolve dynamically is crucial for advancing water-electrolysis technology, especially the restructuring of catalyst surface during complex electrocatalytic reactions. However, for perovskite fluorides, the mechanistic exploration for the influence of the dynamic restructuring on their chemical property and catalytic mechanism is unclear due to their poor conductivity that makes the definition of electrocatalyst structure difficult. Herein, for oxygen evolution reaction (OER), various <i>operando</i> characterizations are employed to investigate the structure-activity relationships of the KNi<i><sub>x</sub></i>Fe<sub>1-</sub><i><sub>x</sub></i>F<sub>3</sub>@NF. Adding iron to the KNi<i><sub>x</sub></i>Fe<sub>1-</sub><i><sub>x</sub></i>F<sub>3</sub> structure increases metal vacancies, enhancing electrochemical reconstruction. For reconstructed KNi<i><sub>x</sub></i>Fe<sub>1-</sub><i><sub>x</sub></i>F<sub>3</sub> structure, the results from <i>operando</i> Raman, <i>operando</i> X-ray diffraction, <i>operando</i> UV–vis spectroscopy, and differential electrochemical mass spectrometry reveal that the surface Ni sites act as catalytic centers within the amorphous Ni(Fe)OOH active layer, and the incorporation of Fe activates oxidized oxygen ions during water oxidation. Theoretical calculations support this by demonstrating the optimized adsorption-free energy of oxygenated intermediates. Consequently, the KNi<sub>0.5</sub>Fe<sub>0.5</sub>F<sub>3</sub>@NF achieves an overpotential of 281 mV to reach OER current of 150 mA·cm<sup>−2</sup> and maintains stable operation for 200 h. These results highlight a promising pathway to tuning OER mechanisms in perovskite fluorides and offer a new perspective for developing high-efficiency and durable OER catalysts.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 6","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202411017","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mechanistic understanding of how electrode–electrolyte interfaces evolve dynamically is crucial for advancing water-electrolysis technology, especially the restructuring of catalyst surface during complex electrocatalytic reactions. However, for perovskite fluorides, the mechanistic exploration for the influence of the dynamic restructuring on their chemical property and catalytic mechanism is unclear due to their poor conductivity that makes the definition of electrocatalyst structure difficult. Herein, for oxygen evolution reaction (OER), various operando characterizations are employed to investigate the structure-activity relationships of the KNixFe1-xF3@NF. Adding iron to the KNixFe1-xF3 structure increases metal vacancies, enhancing electrochemical reconstruction. For reconstructed KNixFe1-xF3 structure, the results from operando Raman, operando X-ray diffraction, operando UV–vis spectroscopy, and differential electrochemical mass spectrometry reveal that the surface Ni sites act as catalytic centers within the amorphous Ni(Fe)OOH active layer, and the incorporation of Fe activates oxidized oxygen ions during water oxidation. Theoretical calculations support this by demonstrating the optimized adsorption-free energy of oxygenated intermediates. Consequently, the KNi0.5Fe0.5F3@NF achieves an overpotential of 281 mV to reach OER current of 150 mA·cm−2 and maintains stable operation for 200 h. These results highlight a promising pathway to tuning OER mechanisms in perovskite fluorides and offer a new perspective for developing high-efficiency and durable OER catalysts.

Abstract Image

Abstract Image

knxfe1 - xf3钙钛矿氟化物中强化水氧化的动态重构实时检测
了解电极-电解质界面如何动态演变的机制对于推进水电解技术,特别是在复杂电催化反应中催化剂表面的重组至关重要。而对于钙钛矿氟化物来说,由于其导电性较差,电催化剂结构难以定义,因此动态重构对其化学性质和催化机理影响的机理探索尚不清楚。本文在析氧反应(OER)中,采用了多种操作分子表征来研究KNixFe1-xF3@NF的构效关系。在KNixFe1-xF3结构中加入铁增加了金属空位,增强了电化学重构。对于重构的KNixFe1-xF3结构,通过拉曼光谱、x射线衍射、紫外-可见光谱和差分电化学质谱分析结果表明,表面Ni位点在非晶Ni(Fe)OOH活性层中起到催化中心的作用,Fe的加入在水氧化过程中激活了氧化氧离子。理论计算通过证明氧合中间体的最佳无吸附能来支持这一点。结果表明,KNi0.5Fe0.5F3@NF的过电位为281 mV, OER电流为150 mA·cm−2,运行时间为200 h。这些结果为调整钙钛矿氟化物的OER机制提供了一条有希望的途径,为开发高效、耐用的OER催化剂提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信