{"title":"Mechanism of z-scheme BN/BiOI heterojunction for efficient Photodegradation of Perfluorooctane sulfonate (PFOS)","authors":"Lijie Duan, Mengbin Gu, Minghao Wang, Liquan Liu, Xue Cheng, Jun Huang","doi":"10.1016/j.seppur.2024.131229","DOIUrl":null,"url":null,"abstract":"Perfluorooctane sulfonate (PFOS) poses a significant threat to human health and ecosystems throughout its lifecycle because of its PBT-LRT properties. In this study, a Z-Scheme photocatalyst BN/BiOI was developed and evaluated for its efficacy in photodegrading PFOS. Notably, after 2 h of reaction, 100 % removal of PFOS (k<sub>obs</sub> = 1.278 h<sup>−1</sup>) was achieved, alongside a 100 % desulfurization rate and a 45.40 % defluorination rate after 6 h. Comparing the BN/BiOI system to BN, the remarkable enhancement observed in BN/BiOI heterojunction can be attributed primarily to the efficient separation and reduced recombination rate of photogenerated electrons and holes. Insights from Electron Paramagnetic Resonance (EPR) analysis shed light on the roles of e<sup>-</sup>, h<sup>+</sup>, •OH, and •O<sub>2</sub>H radicals in the PFOS degradation process facilitated by BN/BiOI. The proposed mechanism for photocatalytic PFOS degradation by the BN/BiOI system underscores the initial breaking of the C-S bond. Moreover, BN/BiOI showcases its effectiveness in degrading perfluorocarboxylic acids (PFOA, TA, C7, and Gen-X) as well as perfluoro sulfonic acids (F-53B, F-53, and 6:2 FTS), highlighting its potential for treating not only PFOS but also other PFAS contaminants across a broad pH range. To the best of our knowledge, this study is the first to demonstrate the Z-scheme BN/BiOI heterogeneous photocatalytic degradation of PFOS.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"83 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2024.131229","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Perfluorooctane sulfonate (PFOS) poses a significant threat to human health and ecosystems throughout its lifecycle because of its PBT-LRT properties. In this study, a Z-Scheme photocatalyst BN/BiOI was developed and evaluated for its efficacy in photodegrading PFOS. Notably, after 2 h of reaction, 100 % removal of PFOS (kobs = 1.278 h−1) was achieved, alongside a 100 % desulfurization rate and a 45.40 % defluorination rate after 6 h. Comparing the BN/BiOI system to BN, the remarkable enhancement observed in BN/BiOI heterojunction can be attributed primarily to the efficient separation and reduced recombination rate of photogenerated electrons and holes. Insights from Electron Paramagnetic Resonance (EPR) analysis shed light on the roles of e-, h+, •OH, and •O2H radicals in the PFOS degradation process facilitated by BN/BiOI. The proposed mechanism for photocatalytic PFOS degradation by the BN/BiOI system underscores the initial breaking of the C-S bond. Moreover, BN/BiOI showcases its effectiveness in degrading perfluorocarboxylic acids (PFOA, TA, C7, and Gen-X) as well as perfluoro sulfonic acids (F-53B, F-53, and 6:2 FTS), highlighting its potential for treating not only PFOS but also other PFAS contaminants across a broad pH range. To the best of our knowledge, this study is the first to demonstrate the Z-scheme BN/BiOI heterogeneous photocatalytic degradation of PFOS.
期刊介绍:
Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.