Soil Organic Carbon Accumulation and Stability Under Rice Straw, Ash, and Biochar Amendment in Saline-Alkali Soil

IF 3.6 2区 农林科学 Q2 ENVIRONMENTAL SCIENCES
Ya Jiang, Wenhao Zhu, Yuhang Han, Cuilan Li, Jinjing Zhang
{"title":"Soil Organic Carbon Accumulation and Stability Under Rice Straw, Ash, and Biochar Amendment in Saline-Alkali Soil","authors":"Ya Jiang, Wenhao Zhu, Yuhang Han, Cuilan Li, Jinjing Zhang","doi":"10.1002/ldr.5442","DOIUrl":null,"url":null,"abstract":"Salinization and alkalization contribute significantly to soil degradation. Rice (<i>Oryza sativa</i> L.) cultivation is an effective approach to remediate saline-alkali soil. However, how rice straw (RS), rice straw biochar (RSB), and rice straw ash (RSA) impact soil organic carbon (SOC) accumulation and stability in saline-alkali soil remains unknown. Herein, SOC and SOC fractions contents in bulk soil and its particle- and aggregate-size classes under RS, RSB, and RSA amendments and control with amendments (CK) were investigated by field experiment. Carbon-13 nuclear magnetic resonance spectroscopy was used to evaluate bulk SOC chemical composition. The SOC and SOC fractions contents ranked as CK&lt;RSA&lt;RS&lt;RSB. Aromatic C was higher whereas O-alkyl C was lower in RSB relative to other treatments. The contents of SOC and SOC fractions in bulk soil were generally positively correlated with those in particle- and aggregate-size classes as well as with aromatic C. Redundancy analysis showed that exchangeable sodium and electrical conductivity were the most significant factors in shaping SOC contents and chemical composition. The results indicated that RSB is more beneficial for SOC accumulation and stabilization as compared to RS and RSA. The primary mechanisms of SOC accumulation in RSB-amended soil included physical protection afforded by aggregate classes, chemical protection mediated by silt and clay fractions, and biochemical protection with recalcitrant aromatic C. Our findings suggest that converting RS into RSB and the subsequent application of this biochar have the potential for improving soil quality in saline-alkali paddy field.","PeriodicalId":203,"journal":{"name":"Land Degradation & Development","volume":"268 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Land Degradation & Development","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/ldr.5442","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Salinization and alkalization contribute significantly to soil degradation. Rice (Oryza sativa L.) cultivation is an effective approach to remediate saline-alkali soil. However, how rice straw (RS), rice straw biochar (RSB), and rice straw ash (RSA) impact soil organic carbon (SOC) accumulation and stability in saline-alkali soil remains unknown. Herein, SOC and SOC fractions contents in bulk soil and its particle- and aggregate-size classes under RS, RSB, and RSA amendments and control with amendments (CK) were investigated by field experiment. Carbon-13 nuclear magnetic resonance spectroscopy was used to evaluate bulk SOC chemical composition. The SOC and SOC fractions contents ranked as CK<RSA<RS<RSB. Aromatic C was higher whereas O-alkyl C was lower in RSB relative to other treatments. The contents of SOC and SOC fractions in bulk soil were generally positively correlated with those in particle- and aggregate-size classes as well as with aromatic C. Redundancy analysis showed that exchangeable sodium and electrical conductivity were the most significant factors in shaping SOC contents and chemical composition. The results indicated that RSB is more beneficial for SOC accumulation and stabilization as compared to RS and RSA. The primary mechanisms of SOC accumulation in RSB-amended soil included physical protection afforded by aggregate classes, chemical protection mediated by silt and clay fractions, and biochemical protection with recalcitrant aromatic C. Our findings suggest that converting RS into RSB and the subsequent application of this biochar have the potential for improving soil quality in saline-alkali paddy field.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Land Degradation & Development
Land Degradation & Development 农林科学-环境科学
CiteScore
7.70
自引率
8.50%
发文量
379
审稿时长
5.5 months
期刊介绍: Land Degradation & Development is an international journal which seeks to promote rational study of the recognition, monitoring, control and rehabilitation of degradation in terrestrial environments. The journal focuses on: - what land degradation is; - what causes land degradation; - the impacts of land degradation - the scale of land degradation; - the history, current status or future trends of land degradation; - avoidance, mitigation and control of land degradation; - remedial actions to rehabilitate or restore degraded land; - sustainable land management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信