Kai Yan, Yuhao Tang, Yan Zong, Qunna Xu, Xiaodan Sun
{"title":"Aloe Leaves-Inspired Multi-Stimuli Bidirectional Bending Self-Sensing Actuator for Smart Solar Panel","authors":"Kai Yan, Yuhao Tang, Yan Zong, Qunna Xu, Xiaodan Sun","doi":"10.1002/smll.202410244","DOIUrl":null,"url":null,"abstract":"Soft actuators with multi-stimuli response have shown promising applications in soft intelligent robots. However, most soft actuators are limited by the unidirectional actuation and self-perception capabilities. Here, a bilayer self-sensing actuator with bidirectional actuation is proposed, which showed exceptional bidirectional actuation, self-sensing of temperature and moisture, and smart solar panel. The actuator layer consisted of the powerful hygroscopic sensitivity of poly(vinyl alcohol) (PVA), poly(sodium styrene sulfonate) (PSS), and the conductive carbon black (CB). The structural layer is hydrophobic polyurea (PUU). The bilayer self-sensing actuator is bent to one side under NIR or temperature stimulation (curvature reaches 3.8 cm<sup>−1</sup>) and bent to opposite side with moisture stimulation (curvature reaches −4.6 cm<sup>−1</sup>). Moreover, various bionic robots, weightlifting, and selective grasping robots are demonstrated. Simultaneously, owing to CB gradient, the bilayer sensing actuators can detect movement in different bending directions with a fast response speed (82 ms). In addition, when moisture increased, the smart solar panel bent to downward and cleaned the debris. Upon the sunshine, the smart solar panel faced to sun and maximized power output. More interestingly, the smart solar panel can monitor its bending degree and orientation. The proposed bilayer self-sensing actuator paved the way for advancements in artificial intelligence robots.","PeriodicalId":228,"journal":{"name":"Small","volume":"55 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202410244","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Soft actuators with multi-stimuli response have shown promising applications in soft intelligent robots. However, most soft actuators are limited by the unidirectional actuation and self-perception capabilities. Here, a bilayer self-sensing actuator with bidirectional actuation is proposed, which showed exceptional bidirectional actuation, self-sensing of temperature and moisture, and smart solar panel. The actuator layer consisted of the powerful hygroscopic sensitivity of poly(vinyl alcohol) (PVA), poly(sodium styrene sulfonate) (PSS), and the conductive carbon black (CB). The structural layer is hydrophobic polyurea (PUU). The bilayer self-sensing actuator is bent to one side under NIR or temperature stimulation (curvature reaches 3.8 cm−1) and bent to opposite side with moisture stimulation (curvature reaches −4.6 cm−1). Moreover, various bionic robots, weightlifting, and selective grasping robots are demonstrated. Simultaneously, owing to CB gradient, the bilayer sensing actuators can detect movement in different bending directions with a fast response speed (82 ms). In addition, when moisture increased, the smart solar panel bent to downward and cleaned the debris. Upon the sunshine, the smart solar panel faced to sun and maximized power output. More interestingly, the smart solar panel can monitor its bending degree and orientation. The proposed bilayer self-sensing actuator paved the way for advancements in artificial intelligence robots.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.