Qian Zhang, Wenhai Yin, Xinyao Chen, Aimin Zhou, Guixu Zhang, Zhi Zhao, Zhiqiang Li, Yan Zhang, Samuel Jacob Bunu, Jingshan Shen, Weiliang Zhu, Xiangrui Jiang, Zhijian Xu
{"title":"F-CPI: A Multimodal Deep Learning Approach for Predicting Compound Bioactivity Changes Induced by Fluorine Substitution","authors":"Qian Zhang, Wenhai Yin, Xinyao Chen, Aimin Zhou, Guixu Zhang, Zhi Zhao, Zhiqiang Li, Yan Zhang, Samuel Jacob Bunu, Jingshan Shen, Weiliang Zhu, Xiangrui Jiang, Zhijian Xu","doi":"10.1021/acs.jmedchem.4c02668","DOIUrl":null,"url":null,"abstract":"Fluorine (F) substitution is a common method of drug discovery and development. However, there are no accurate approaches available for predicting the bioactivity changes after F-substitution, as the effect of substitution on the interactions between compounds and proteins (CPI) remains a mystery. In this study, we constructed a data set with 111,168 pairs of fluorine-substituted and nonfluorine-substituted compounds. We developed a multimodal deep learning model (F-CPI). In comparison with traditional machine learning and popular CPI task models, the accuracy, precision, and recall of F-CPI (∼90, ∼79, and ∼45%) were higher than those of GraphDTA (∼86, ∼58, and ∼40%). The application of the F-CPI for the structural optimization of hit compounds against SARS-CoV-2 3CL<sup>pro</sup> by F-substitution achieved a more than 100-fold increase in bioactivity (IC<sub>50</sub>: 0.23 μM vs 28.19 μM). Therefore, the multimodal deep learning model F-CPI would be a veritable and effective tool in the context of drug discovery and design.","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"11 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c02668","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fluorine (F) substitution is a common method of drug discovery and development. However, there are no accurate approaches available for predicting the bioactivity changes after F-substitution, as the effect of substitution on the interactions between compounds and proteins (CPI) remains a mystery. In this study, we constructed a data set with 111,168 pairs of fluorine-substituted and nonfluorine-substituted compounds. We developed a multimodal deep learning model (F-CPI). In comparison with traditional machine learning and popular CPI task models, the accuracy, precision, and recall of F-CPI (∼90, ∼79, and ∼45%) were higher than those of GraphDTA (∼86, ∼58, and ∼40%). The application of the F-CPI for the structural optimization of hit compounds against SARS-CoV-2 3CLpro by F-substitution achieved a more than 100-fold increase in bioactivity (IC50: 0.23 μM vs 28.19 μM). Therefore, the multimodal deep learning model F-CPI would be a veritable and effective tool in the context of drug discovery and design.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.