Quantifying urban hydrological processes effects on urban climate: A perspective from a novel parameterization scheme

IF 6 2区 工程技术 Q1 ENVIRONMENTAL SCIENCES
Miao Yu, Jianping Guo, Guiqian Tang
{"title":"Quantifying urban hydrological processes effects on urban climate: A perspective from a novel parameterization scheme","authors":"Miao Yu, Jianping Guo, Guiqian Tang","doi":"10.1016/j.uclim.2024.102232","DOIUrl":null,"url":null,"abstract":"Cutting-edge urban canopy parameterization techniques were employed to investigate the impacts of urban hydrological processes. We conducted three one-month simulation tests to quantify the impact of urban hydrological processes on urban climate, which is induced by urban ground greening, green roofs and surface water. It is found that urban hydrological processes significantly reduce maximum temperatures and improves comfort, especially during heatwaves, but its effect on mean air temperature was found to be less pronounced. Compared to ground greening, green roofs provide enhanced cooling advantages. Overall, all three hydrological processes produce a more spatially dispersed distribution of precipitation with a reduction of 25 % in total precipitation amount. This can be attributed to the mitigation of urban heat island intensity by latent heat and the stabilization of the planetary boundary layer. The finding has implication for the measures that can be taken in mitigating the adverse impact induced by rapid urban expansion.","PeriodicalId":48626,"journal":{"name":"Urban Climate","volume":"167 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Climate","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.uclim.2024.102232","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Cutting-edge urban canopy parameterization techniques were employed to investigate the impacts of urban hydrological processes. We conducted three one-month simulation tests to quantify the impact of urban hydrological processes on urban climate, which is induced by urban ground greening, green roofs and surface water. It is found that urban hydrological processes significantly reduce maximum temperatures and improves comfort, especially during heatwaves, but its effect on mean air temperature was found to be less pronounced. Compared to ground greening, green roofs provide enhanced cooling advantages. Overall, all three hydrological processes produce a more spatially dispersed distribution of precipitation with a reduction of 25 % in total precipitation amount. This can be attributed to the mitigation of urban heat island intensity by latent heat and the stabilization of the planetary boundary layer. The finding has implication for the measures that can be taken in mitigating the adverse impact induced by rapid urban expansion.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Urban Climate
Urban Climate Social Sciences-Urban Studies
CiteScore
9.70
自引率
9.40%
发文量
286
期刊介绍: Urban Climate serves the scientific and decision making communities with the publication of research on theory, science and applications relevant to understanding urban climatic conditions and change in relation to their geography and to demographic, socioeconomic, institutional, technological and environmental dynamics and global change. Targeted towards both disciplinary and interdisciplinary audiences, this journal publishes original research papers, comprehensive review articles, book reviews, and short communications on topics including, but not limited to, the following: Urban meteorology and climate[...] Urban environmental pollution[...] Adaptation to global change[...] Urban economic and social issues[...] Research Approaches[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信